Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Advances in computational mathematics 6 (1996), S. 295-308 
    ISSN: 1572-9044
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract A mathematical model to analyse some key aspects of the metal cast process is described involving the filling of the mould by liquid metal and simultaneously, undergoing both cooling and solidification (re-melting) phase change. A computational solution procedure based upon a finite volume discretisation approach, on both structured and unstructured meshes, is described. The overall flow solution procedure is based on the pressure correction algorithm SIMPLE suitably adapted to: (a) solve for the free surface with minimal smearing by the SEA algorithm, and (b) solve for the solidification/melting phase change using an enthalpy conservation algorithm developed by Voller, but with its root in the work of Crank many years ago.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 1179-1197 
    ISSN: 0271-2091
    Keywords: adaptive grids ; equidistribution ; compressible viscous aerodynamics ; CFD modelling ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A technique is described for the adaptation of a structured control volume mesh during the iterative solution process of the Navier-Stokes equations. The scalar equidistribution method is adopted, in conjunction with a Laplace-like grid solver to make a curvilinear body-fitted grid sensitive to local flow gradients. Hence, whilst the total number of grid nodes remains constant during a computation, their relative position is continuously adjusted to promote clustering of cells in regions where gradients are high. The focus of this work is in compressible aerodynamics, where such clustering would be desirable in regions containing shocks but also in boundary layers. The technique is three-dimensional and operates in a series of user-defined grid subdomains or patches. These patches act as reference frames within which grid activity takes place. Bi-cubic splines are extensively used to define the aerodynamic surfaces forming the calculation boundaries and to ensure that grid movement does not compromise surface integrity. The technique is applied to aerofoils, wing surfaces, transonic ducts and nozzles and a supersonic wedge cascade. Significant sharpening of both normal and oblique shock discontinuities is demonstrated over static grid simulations and with fewer overall grid nodes. The technique is successful in both inviscid and viscous (turbulent) simulations.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...