Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-7373
    Keywords: MRI ; wrist coil ; 3-D volume measurements ; C6 glioma ; MRI mouse brain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In this study, using high resolution coils; implanted growing rat brain tumors were imaged sequentially with 3-D measurements generated by means of a clinical magnetic resonance imaging system (CMRI) and commercially available wrist coil. Ten female Sprague–Dawley rats were used, eight were implanted with C6 rat glioma cells and two served as controls. The images that were used for the three-dimensional (3-D) measurements were obtained from T1 weighted post contrast sequences. A commercially available computer work station with 3-D image analysis software was used to generate the tumor volumes. In addition to the rat studies a mouse was included to see if the resolution would be adequate for imaging very small brains. Six rats had brain tumor growth after transplantation and two rats did not have any tumor growth, however, their images were similar to the controls animals. Tumor volumes varied widely among the implanted rats. The number of implanted tumor cells had no direct relationship to developing tumor volumes. This study demonstrates that high resolution images of a rat brain tumor can be obtained from a CMRI system using a commercially available wrist coil which is capable of imaging two rats at the same time or even a mouse brain. A commercially available computer work station was able to generate the tumor volumes. The ability to image brain tumor and generate volume measurements over time has potential for animal research.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-7373
    Keywords: selenium ; human glioma cells ; mitochondria ; apoptosis ; fibroblasts ; ultrastructure ; MTT
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We examined the effect of the trace element selenium on human glioma cell lines: T98G, U373MG, and U87MG, in addition to dermal fibroblast cells. Cultures were incubated with sodium selenite, and the following parameters were studied: cell growth, mitochondrial function, and ultrastructure. Cell growth was assayed by counting the number of viable cells after treatment with selenium. Mitochondrial function was analyzed using the MTT (tetrazolium salt reduction) assay. Apoptosis was determined by evaluating nuclear chromatin condensation by electron microscopy. The results indicated that selenium had a significant inhibitory effect on the growth of the tumor cells but had little effect upon dermal fibroblasts which had been passaged numerous times. Selenium also induced mitochondrial damage as shown by MTT assay in two brain tumor cell lines and in minimally passaged fibroblasts, but it had little effect upon the high-passage fibroblasts. Ultrastructurally, mitochondria had electron-dense inclusions resulting from selenium treatment. High rates of apoptosis were induced by selenium in the tumor cell lines and in the minimally passaged fibroblasts, whereas the fibroblasts with a high number of passages had some resistance to selenium treatment. This study correlates the adverse effects of selenium on mitochondrial function, inhibition of cell growth, and apoptosis and shows that selenium similarly affects three different brain tumor cell lines and minimally passaged fibroblasts. Further, the results with fibroblasts show that some types of cells after repeated passages can develop resistance to selenium damage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...