Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 161 (1989), S. 1244-1251 
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 167-172 
    ISSN: 0006-3592
    Keywords: Yeast ; growth ; organic solvent ; microemulsion ; cells ; microbiology ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Some new aspects of microbiology in water-in-oil microemulsions are investigated using Candida pseudotropicalis in a hexadecane solution containing Tween85/Span80 (each 5% wt:wt) as surfactant, and limited amount of water (up to 3%, vol:vol), Microemulsion solutions containing cells up to 10 mg fresh weight per milliliter can be prepared, which display a greater time stability and a much smaller light scattering than aqueous suspensions having the same cell concentration. This is ascribed to a lower aggregation tendency of the cells in the microemulsion environment. It is also shown that C. pseudotropicalis cells are able to grow (up to a factor of approximately 6-7 within a few days) in the microemulsion system containing nutrient medium in the aqueous microphase; but they are also able to grow at the expense of the hexadecane. This is proved with radioactive-labeled hexadecane by measuring the increase of radioactivity in the cells as well as the emission of 14CO2. The growth rate of the cells is then compared with the growth rate of cellular proteins during cell reproduction in the microemulsion system. Two regimes are observed: a first one, in which cells growth rate and protein growth rate proceed parallel to each other; and a second one (established after 0.5-1 day) characterized by depletion of proteins in the microemulsion system. The implications of these findings for cell metabolism in microemulsion and for possible biotechnological applications are discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...