Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 29 (1995), S. 309-314 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: This study assessed the effectivenness of finite element analysis in predicting the stress intensity factor (KIC) for three types of dental materials: a glass ionomer, a dental amalgam, and a composite resin. Laboratory tests were conducted on small single-edge notch specimens loaded in three-point bending to determine values for fracture toughness (KQ). Using the dimensions measured for each laboratory specimen, a J integral approach was employed to calculate KIC using finite element analysis. Both two-dimensional plane strain and three-dimensional models were used in determining KIC for each specimen, and these values were compared to the KQ values obtained from laboratory tests. The results indicated that no significant differences existed between laboratory results and those obtained from both two- and three-dimensional finite element models (P 〉 .85). For the three-dimensional model, values for KIC were found to vary across the specimen thickness, with the values at the center of the specimen closely paralleling those obtained from the two-dimensional plane strain J integral technique was as effective as the three-dimensional technique in calculating values for KIC. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...