Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experiments designed for generating internal transport barriers in the plasmas of the Joint European Torus [JET, P. H. Rebut et al., Proceedings of the 10th International Conference, Plasma Physics and Controlled Nuclear Fusion, London (International Atomic Energy Agency, Vienna, 1985), Vol. I, p. 11] reveal cascades of Alfvén perturbations with predominantly upward frequency sweeping. These experiments are characterized by a hollow plasma current profile, created by lower hybrid heating and current drive before the main heating power phase. The cascades are driven by ions accelerated with ion cyclotron resonance heating (ICRH). Each cascade consists of many modes with different toroidal mode numbers and different frequencies. The toroidal mode numbers vary from n=1 to n=6. The frequency starts from 20 to 90 kHz and increases up to the frequency range of toroidal Alfvén eigenmodes. In the framework of ideal magnetohydrodynamics (MHD) model, a close correlation is found between the time evolution of the Alfvén cascades and the evolution of the Alfvén continuum frequency at the point of zero magnetic shear. This correlation facilitates the study of the time evolution of both the Alfvén continuum and the safety factor, q(r), at the point of zero magnetic shear and makes it possible to use Alfvén spectroscopy for studying q(r). Modeling shows that the Alfvén cascade occurs when the Alfvén continuum frequency has a maximum at the zero shear point. Interpretation of the Alfvén cascades is given in terms of a novel-type of energetic particle mode localized at the point where q(r) has a minimum. This interpretation explains the key experimental observations: simultaneous generation of many modes, preferred direction of frequency sweeping, and the absence of strong continuum damping. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 5192-5198 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The neoclassical ion transport in a tokamak plasma with circular cross section is studied with guiding center particle simulations. A Monte Carlo model of pitch-angle scattering which includes momentum conservation is employed. The model includes the whole plasma inside closed flux surfaces, but the focus is on the near-axis transport due to particles with wide orbits which lead to a different heat flux than in the standard theory. Neither of two recent theories of banana regime transport near the axis is confirmed by the simulations, nor do the numerical results for the plateau regime agree with a recent theory of wide-orbit transport in this regime. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...