Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0992-7689
    Keywords: Oceanography: physical (air-sea interaction; eddies and mesoscale processes) ; Meteorology and atmospheric dynamics (ocean-atmosphere interactions)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm−2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is highly non-local and enhanced in the coupled simulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale) experiment has been conducted from June to November 1993 in the Northeast Atlantic between the Azores and Madeira. It was centered on the study of the mesoscale ocean circulation and air-sea interactions. The experimental investigation was achieved at the mesoscale using moorings, floats, and ship hydrological survey, and at a smaller scale by one dedicated ship, two instrumented aircraft, and surface drifting buoys, for one and a half month in October-November (IOP: intense observing period). Observations from meteorological operational satellites as well as spaceborne microwave sensors were used in complement. The main studies undertaken concern the mesoscale ocean, the upper ocean, the atmospheric boundary layer, and the sea surface, and first results are presented for the various topics. From data analysis and model simulations, the main characteristics of the ocean circulation were deduced, showing the close relationship between the Azores front meander and the occurrence of Mediterranean water lenses (meddies), and the shift between the Azores current frontal signature at the surface and within the thermocline. Using drifting buoys and ship data in the upper ocean, the gap between the scales of the atmospheric forcing and the oceanic variability was made evident. A 2 °C decrease and a 40-m deepening of the mixed layer were measured within the IOP, associated with a heating loss of about 100 W m−2. This evolution was shown to be strongly connected to the occurrence of storms at the beginning and the end of October. Above the surface, turbulent measurements from ship and aircraft were analyzed across the surface thermal front, showing a 30% difference in heat fluxes between both sides during a 4-day period, and the respective contributions of the wind and the surface temperature were evaluated. The classical momentum flux bulk parameterization was found to fail in low wind and unstable conditions. Finally, the sea surface was investigated using airborne and satellite radars and wave buoys. A wave model, operationally used, was found to get better results compared with radar and wave-buoy measurements, when initialized using an improved wind field, obtained by assimilating satellite and buoy wind data in a meteorological model. A detailed analysis of a 2-day period showed that the swell component, propagating from a far source area, is underestimated in the wave model. A data base has been created, containing all experimental measurements. It will allow us to pursue the interpretation of observations and to test model simulations in the ocean, at the surface and in the atmospheric boundary layer, and to investigate the ocean-atmosphere coupling at the local and mesoscales.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Hydrology 155 (1994), S. 353-387 
    ISSN: 0022-1694
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1436-5065
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Summary A one dimensional analytical model of katabatic wind over the Antarctica has been developed. This parametric model is derived from the bulk two-layer model of Ball including the surface friction and taking into account the Earth's rotation and the geostrophic wind in the upper layer. This model is validated using the data set (70 soundings) collected during IAGO experiment at D47 (67°24′S, 138°43′E, altitude 1 564m), 110 km inland from the coast of Adélie Land. The parameteric model is then introduced into a GCM which is a spectral global version of the operational numerical weather prediction model used by the French weather service. The most significant effect of the parameterization is a 50 m increase of the geopotential height over the South Pole. The surface temperature at the South Pole increases (2°C) reducing the pole-midlatitude thermal gradient. The westerly circulation at 50° S is slowed down (4m/s at 850 hPa), and the surface pressure at the South Pole increases (4hPa). These results, consistent with an increase of katabatic winds, would however be improved by a better coupling between the parameterization and the GCM boundary layer.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract  The impact of climate change on the hydrology of continental surfaces is critical for human activities but the response of the surface to this perturbation may also affect the sensitivity of the climate. This complex feedback is simulated in general circulation models (GCMs) used for climate change predictions by their land-surface schemes. The present study attempts to quantify the uncertainty associated with these schemes and what impact it has on our confidence in the simulated climate anomalies. Four GCMs, each coupled to two different land-surface schemes, are used to explore the spectrum of uncertainties. It is shown that, in this sample, surface processes have a significant contribution to our ability to predict surface temperature changes and perturbations of the hydrological cycle in an environment with doubled greenhouse gas concentration. The results reveal that the uncertainty introduced by land-surface processes in the simulated climate is different from its impact on the sensitivity of GCMs to climate change, indeed an alteration of the surface parametrization with little impact on model climate can affect sensitivity significantly. This result leads us to believe that the validation of land-surface schemes should not be limited to the current climate but should also cover their sensitivity to variations in climatic forcing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Sea ice has a major influence on climate in high latitudes. In this paper we analyzed the impact of removal of Arctic sea-ice cover on the climate simulated by a T42 20-level version of the French spectral model “Emeraude”. The control experiment was the second winter of an annual cycle simulation of the present climate. In the perturbed simulation the Arctic sea-ice cover was replaced by open ocean maintained at the freezing temperature of sea water. The zonal mean patterns of the model response were found to be in good agreement with earlier simulations of Fletcher et al. and Warshaw and Rapp. The atmospheric warming, caused by the increase of upward fluxes of sensible and latent heat and of longwave radiation from the ice-free ocean surface, is largely limited to the high latitudes poleward of 70° N and the lower half of the troposphere and leads to a surface pressure decrease and a precipitation increase over this area. We also analyze the geographical distribution of the response and the mechanisms that can explain the simulated cooling over Eurasia in relation to the energy budget at the surface. Finally, we discuss the reduction of cloud cover over the ice-free Arctic, which was an unexpected result of our simulation, and conclude that further studies are necessary to resolve the question of cumulus convection and cloud process parameterization in high latitudes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 5 (1991), S. 189-200 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract An annual cycle of an atmospheric general circulation model (AGCM) is presented. The winter and summer zonal averages of the atmospheric fields are compared with an observed climatology. The main features of the observed seasonal means are well reproduced by the model. One of the main discrepancies is that the simulated atmosphere is too cold, particularly in its upper part. Some other discrepancies might be explained by the interannual variability. The AGCM surface fluxes are directly compared to climatological estimates. On the other hand, the calculation of meridional heat transport by the ocean, inferred from the simulated energy budget, can be compared to transport induced from climatologies. The main result of this double comparison is that AGCM fluxes generally are within the range of climatological estimates. The main deficiency of the model is poor partitioning between solar and non-solar heat fluxes in the tropical belt. The meridional heat transport also reveals a significant energy-loss by the Northern Hemisphere ocean north of 45° N. The possible implications of model surface flux deficiencies on coupling with an oceanic model are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...