Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1420-908X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Increasing evidence suggests that excessive activation of the calcium-activated neutral protease μ-calpain could play a major role in calcium-mediated neuronal degeneration after acute brain injuries. To further investigate the changes of the in vivo activity of μ-calpain after unilateral cortical impact injury in vivo, the ratio of the 76-kDa activated isoform of μ-calpain to its 80-kDa precursor was measured by western blotting. This μ-calpain activation ratio increased to threefold in the pellet of cortical samples ipsilateral to the injury site at 15 min, 1 h, 3 h, and 6 h after injury and returned to control levels at 24–48 h after injury. We also investigated the effect of μ-calpain activation on proteolysis of the neuronal cytoskeletal protein α-spectrin. Immunoreactivity for α-spectrin breakdown products was detectable within 15 min after injury in cortical samples ipsilateral to the injury site. The levels of α-spectrin breakdown products increased in a biphasic manner, with a large increase between 15 min and 6 h after injury, followed by a smaller increase between 6 and 24 h after the insult. No further accumulation of α-spectrin breakdown products was observed between 24 and 48 h after injury. Histopathological examinations using hematoxylin and eosin staining demonstrated dark, shrunken neurons within 15 min after traumatic brain injury. No evidence of μ-calpain autolysis, calpain-mediated α-spectrin degradation, or hematoxylin and eosin neuronal pathology was detected in the contralateral cortex. Although μ-calpain autolysis and cytoskeletal proteolysis occurred concurrently with early morphological alterations, evidence of calpain-mediated proteolysis preceded the full expression of evolutionary histopathological changes. Our results indicate that rapid and persistent μ-calpain activation plays an important role in cortical neuronal degeneration after traumatic brain injury. Our data also suggest that specific inhibitors of calpain could be potential therapeutic agents for the treatment of traumatic brain injury in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We examined the effect of a 6 min depolarization with 60 mM KCl and 1.8, 2.8 or 5.8 mM extracellular CaCl2 on neurofilament proteins of high (NF-H), medium (NF-M) and low (NF-L) molecular weight in primary septo-hippocampal cultures. One day after depolarization, Western blot analyses revealed losses of all three neurofilament proteins. Increasing the extracellular calcium concentration from 1.8 to 5.8 mM CaCl2 in the presence of 60 mM KCl produced increased losses of all three neurofilament proteins to ˜80% of control values in the absence of cell death. Calcium-dependent losses of the neurofilament proteins correlated with calcium-dependent increases in calpain 1-mediated breakdown products of alpha-spectrin. Calpain inhibitors 1 and 2, applied immediately after depolarization and made available to cultures for 24 h, reduced losses of all three neurofilament proteins to ˜14% of control values. The protective effects of calpain inhibitors 1 and 2 were influenced by different levels of extracellular calcium. Qualitative immunohistochemical evaluations confirmed semiquantitative Western blot data on neurofilament loss and protection by calpain inhibitors 1 and 2. We propose that brief depolarization causes loss of neurofilament proteins, possibly due to calpain activation. Thus, calpain inhibitors could represent a viable strategy for preserving the cytoskeletal structure of injured neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-6903
    Keywords: Neurofilaments ; calpain ; traumatic brain injury ; two-dimensional gel electrophoresis ; cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Analyses using either one or two-dimensional gel electrophoresis were performed to identify the contribution of several proteases to lower molecular weight (MW) neurofilament 68 (NF68) break down products (BDPs) detected in cortical homogenates following unilateral cortical impact injury in rats. One dimensional immunoblot of BDPs obtained from in vitro cleavage of enriched neurofilaments (NF) by purified μ-calpain, m-calpain, cathepsin, B, cathepsin D, and CPP32 (caspase-3) were compared to in vivo samples from rats following traumatic brain injury (TBI). Comparison of these blots provided information on the relative contribution of different cysteine or aspartic proteases to NF loss following brain injury. As early as 3 hrs post-injury, cortical impact resulted in the presence of several lower MW NF68 immunopositive bands having patterns similar to those previously reported to be produced by calpain mediated proteolysis of neurofilaments. Only μ-calpain and m-calpain in vitro digestion of enriched neurofilaments contributed to the presence of the low MW 57 kD NF68 break down product (BDP) detected in post-TBI samples. Cathepsin B, cathepsin D, and caspase-3 failed to produce either the 53 kD or 57 kD NF BDPs. Further, 1 and 2 dimensional peptide maps containing a 1:1 ratio of in vivo and in vitro tissue samples showed complete comigration of lower MW immunopositive spots produced by TBI or in vitro incubation with m-calpain, thus providing additional evidence for the potential role of calpain activation to the production of NF68 BDPs following TBI. More importantly, 2-dimensional gel electrophoresis detected that immunopositive NF68 spots shifted to the basic pole (+) suggesting that dephosphorylation of the NF68 subunit pool may be associated with NF protein loss following TBI, an observation not previously noted in any model of experimental brain injury.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...