Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical chemistry accounts 17 (1970), S. 384-395 
    ISSN: 1432-2234
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Description / Table of Contents: Zusammenfassung Die molekulare Ladungsverteilung des Methans wird mit Hilfe eines orthogonalen Satzes von Molekülorbitalen ausgedrückt, die lediglich durch eine Reihe von Nebenbedingungen an die Einelektronen-Ladungsdichte bestimmt sind. Die Nebenbedingungen bestehen darin, da\ die Ladungsdichte die experimentellen Erwartungswerte eines Satzes von Einelektronen-Operatoren reproduzieren soll. Die Molekülorbitale werden nach einem Satz von atomaren SCF-Orbitalen am Kohlenstoff sowie einem einzigen 1s STO an jedem Wasserstoffatom entwickelt. Man findet, da\ die erhaltene Ladungsverteilung der SCF-Hartree-Fock-Verteilung bezüglich der Bestimmung von Einelektronen-Erwartungswerten gleichkommt. Die Energie, die aus der zugehörigen Wellenfunktion bestimmt wird, ist −40,156 a.u. Dieser Energiewert ist mit demjenigen, der in SCF LCAO MO-Berechnungen mit einem Ähnlichen Basissatz bestimmt wird, vergleichbar und liegt 0,048 a.u. über dem besten berechneten Wert der Hartree-Fock-Grenze.
    Abstract: Résumé La distribution de charge moléculaire du méthane est exprimée au moyen d'un ensemble orthonormé d'orbitales moléculaires déterminées uniquement à l'aide d'une série de contraintes sur les densités de charge obtenues, à savoir que ces densités reproduisent les valeurs expérimentales des valeurs moyennes de différents opérateurs monoélectroniques. Les orbitales moléculaires sont développées en orbitales atomiques SCF sur le carbone et en orbitale de Slater 1s sur chaque hydrogène. La distribution de charge obtenue est trouvée égale à la distribution SCF Hartree-Fock dans les prévisions des valeurs moyennes d'opérateurs monoélectroniques. L'énergie, déterminée à l'aide de la fonction d'onde associée, est −40.156 u.a. Cette valeur de l'énergie est comparable à celle obtenue dans un calcul SCF LCAO MO avec une base similaire et est située à 0,048 u.a. au dessus de la meilleure évaluation de la limite Hartree-Fock.
    Notes: Abstract The molecular charge distribution of methane is expressed in terms of an orthonormal set of molecular orbitals which are determined solely by imposing a set of constraints on the derived one-electron charge density, the constraints being that the charge density reproduce the experimental expectation values of a set of one-electron operators. The molecular orbitals are expanded in terms of an SCF set of atomic orbitals on carbon and a single 1s STO on each hydrogen. The derived charge distribution is found to be equal to the SCF Hartree-Fock distribution in its prediction of one-electron expectation values. The energy, as determined by the associated wave function, is −40.156 a.u. This energy value is comparable to that obtained in a SCF LCAO MO calculation with a similar basis set and is 0.048 a.u. above the best calculated value of the Hartree-Fock limit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 3 (1969), S. 327-347 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: This paper examines the relationship between the topographical features of a molecular charge distribution and the kinetic energy of the system. Specifically, the spatial contributions to the kinetic energy are related to the Laplacian of the total charge density and to the gradients of the natural-orbital densities. It is concluded that a necessary requirement for molecular stability is the existence of a net negative curvature for the molecular charge distribution in the internuclear region. It is shown that the charge density accumulated in the internuclear region of a stable molecule is distributed in such a way as to keep the accompanying increase in the kinetic energy to a minimum. A comparison of the contributions to the kinetic energy from the atomic and molecular charge distributions indicates that in the formation of a stable molecule the contribution from the molecular charge density in the binding region is decreased relative to that of the atoms.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...