Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Two mangrove species, Rhizophora apiculata and R. stylosa, were grown for 14 weeks in a multifactorial combination of salinity (125 and 350 mol m−3 NaCl), humidity (43 and 86% relative humidity at 30°C) and atmospheric CO2 concentration (340 and 700 cm3 m−3). Under ambient [CO2], growth responses to different combinations of salinity and humidity were consistent with interspecific differences in distribution along natural gradients of salinity and aridity in northern Australia. Elevated [CO2] had little effect on relative growth rate when it was limited by salinity but stimulated growth when limited by humidity. Both species benefited most from elevated [CO2] under relatively low salinity conditions in which growth was vigorous, but relative growth rate was enhanced more in the less salt-tolerant and more rapidly growing species, R. apiculata. Changes in both net assimilation rate and leaf area ratio contributed to changes in relative growth rates under elevated [CO2], with leaf area ratio increasing with decrease in humidity. Increase in water use efficiency under elevated [CO2] occurred with increase, decrease or no change in evaporation rates; water use characteristics which depended on both the species and the growth conditions. In summary, elevated [CO2] is unlikely to increase salt tolerance, but could alter competitive rankings of species along salinity × aridity gradients.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 18 (1995), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Field temperature gradient chambers designed for experiments on short-stature plants such as wheat are deseribed. The chambers are portable, easily erected and dismantled, and are self-contained for control and measuring equipment. The design is modular, the modules being bolted together longitudinally although separated by slotted transparent septa which divide the chamber into zones of different temperature. Fresh air, which is blown in horizontally into one end of the chamber by two fans and extracted by a fan mounted vertically at the other end, passes sequentially through the modules. The air stream progressively heats when the sun is shining. Fans are automatically speed-controlled in 100 steps between 20 and 100% of full output to keep the end-to-end temperature difference to within 5°C. During darkness, when the fans are running at minimum speed, heaters mounted in the outlet module are turned on. The chambers in the configuration described enclose 6 × 8m rows of crop, are l-25m high and have side walls which are entirely composed of rigid, vertically sliding doors for crop access.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 18 (1995), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Some assumptions concerning development in wheat (Triticum aestivum, L.) were examined. These are that (i) the rate of development towards anthesis increases linearly with temperature, (ii) the base temperature is 0°C, (iii) the optimum temperature is above the range at which wheat is normally grown, (iv) base and optimum temperatures do not change with development, and (v) the relationships for different cultivars are similar. We tested these assumptions in studies using a naturally lit phytotron with four cultivars and six temperature regimes between 10 and 25°C. Seedlings were vernalized for 50 d and then grown under a photoperiod of 18 h to avoid confounding the responses to vernalization and photoperiod with those to temperature. In cultivars Sunset and Rosella, the rate of development for the full period to anthesis increased linearly between base and optimum temperatures. However, in cultivars Condor and Cappelle Desprez, a linear fit was not statistically acceptable. For these cultivars, the rate of development towards anthesis increased rapidly with increase in temperature from 10 to 19°C, but temperatures higher than 19°C had little or no fürther accelerating effect. When a linear relationship was fitted by ignoring data for temperatures above 19 7deg;C, base temperatures calculated for the full period to anthesis were c. 5.5, 5.5,4.0 and 2.5°C for Sunset, Condor, Rosella and Cappelle Desprez, respectively (i.e. an average value of c. 4 7deg;C). The full period to anthesis was subdivided into three phases for fürther analysis. These were (i) from the beginning of the experiment to terminal spikelet initiation, (ii) from terminal spikelet initiation to heading, and (iii) from heading to anthesis. When these sub-phases were analysed a linear relationship was found to be appropriate for all combinations of cultivar and developmental phase. However, both base and optimum temperatures calculated from the relationships increased as development progressed from (i) to (iii). Averaging across cultivars, base temperatures for the three phases were -1.9, %1.2 and %8.1°C, respectively, while optimum temperatures were 〈22, 25 and 〉25°C, respectively. Cultivars differed substantially in all these parameters. The progressive increase in optimum temperature with phasic development was apparently the main reason why linear fits for the three sub-phases became a curvilinear fit for the full phase to anthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 7 (1984), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract With a view to defining factors regulating the growth responses of sunflower to salinity, plants were grown in solution culture (0, 50 or 100 mol m−3 NaCl) and under natural light, and the areas of every leaf measured once or twice daily from 22 until 38 d after germination. During this period, carbon availability for growth was manipulated by changing light levels and by the use of a photosynthesis inhibitor, DCMU.Salinity reduced relative leaf expansion rates per plant (RLER) by an average of 0.04 (50 mol m−3) and 0.08 (100 mol m−3) m2 m−2 d−1 compared with control plants of equivalent leaf area: the effects were found in expanding leaves regardless of age or size.Control plants expanded faster during the day than the night, but plants grown in salt had an almost constant RLER throughout the 24 h, indicating that salt influences the rate of utilization of assimilates independently of their production. DCMU reduced RLER considerably in both control and salt-treated plants and reduced the advantage of control plants during the day. Conditions of low light also reduced the differences in RLER between control and salt-treated plants.When salt was removed from the root medium of non-DCMU plants, the expansion rates equalled that of the controls within 24 h and remained at the same levels for the following 3 d measurement period: this recovery applied to leaves of all ages. Salt-grown plants with no photosynthesis (DCMU treatments) also increased their expansion rates upon removal of salt from the root medium, thus providing further evidence that growth was not limited by carbohydrate status, i.e. that salt influences growth primarily via its effects on the rate of utilization of stored assimilates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Grass and forage science 56 (2001), S. 0 
    ISSN: 1365-2494
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Germination of annual pasture species was studied under controlled-environment conditions in south-western Australia at temperatures in the range from 4°C to 35°C. Subterranean clover (Trifolium subterraneum) and Wimmera ryegrass (Lolium rigidum) had a germination of 90% between 12°C and 29°C, whereas capeweed (Arctotheca calendula) had a high germination percentage in a much narrower temperature range with an optimum of 25°C. Growth of subterranean clover, capeweed and Wimmera ryegrass between 28 and 49 days after sowing (DAS) was also studied at two photon flux densities, 13 and 30 mol m−2 d−1, and at diel temperatures in the range from 15/10°C to 33/28°C. Pasture species grown at a density of 1000 plants m−2 accumulated at least twice the amount of shoot dry matter when subjected to temperatures of 21/16°C and 27/22°C, compared with a lower temperature of 15/10°C and a higher temperature of 33/28°C. Except at the highest temperature and at high photon flux density, capeweed had lower green area indices (GAI) than the other two species at 28 DAS. Crop growth rates between 28 and 49 DAS were higher in Wimmera ryegrass than in the other two species, whereas subterranean clover had a lower relative growth rate than the other two species at all temperatures and both photon flux densities. Subterranean clover and capeweed intercepted a greater proportion of the incident radiation compared with Wimmera ryegrass. The values of radiation interception and GAI were used to estimate the number of DAS to reach 75% radiation interception [f(0·75)]. The number of days to reach f(0·75) decreased with increasing temperature from 15/10°C to reach a minimum at 27/22°C. The time taken to achieve f(0·75) was always shorter by about 10 d when the photon flux density was 30 mol m−2 d−1 in the autumn compared with 13 mol m−2 d−1 in the winter. These results are discussed in relation to the early growth of annual pasture in the field.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 60 (1984), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: This study aimed to determine if two species of sunflower, Helianthus annus L. cv. Hysun 31 (cultivated, single-stemmed genotype) and Helianthus petiolaris Nuttall ssp. fallax (wild, many-hranched genotype) differed in the response of leaf growth to water deficits. Earlier published studies, concerned only with H. annuus, failed to reveal differences in the response of sunflowers to water stress. Plants of the two species were paired in large containers of soil and grown under high radiation in a glasshouse. One batch of plants was irrigated and the other allowed to dry so that predawn leaf water potentials declined at an average of 0.072 MPa day−1. The dry batch was rewatered when predawn leaf water potentials reached −0.85 MPa.The stress imposed was sufficient to curtail leaf growth so that plants in the dry treatment had only 60% of the leaf area of irrigated plants at the onset of rewatering. Both species were affected by stress to the same relative extent, though their leaf areas at this stage differed 7-fold. Both genotypes also recovered to the same degree in the long term, finally having leaf areas and gross dry matter distribution patterns which were indistinguishable from plants which were irrigated throughout. However, water stress resulted in different distribution patterns of leaf area: H. annuus produced larger leaves at the top of its single stem which compensated for the reduced area in lower leaves, whereas H. petiolaris compensated in the leaves on its branches. Leaves which emerged after the time of stress were most able to compensate in area subsequently. For example, those leaves of H. annuus which emerged one week after stress-relief were more than three times larger than comparable leaves on plants irrigated continuously. Leaf expansion rates were affected earlier in the stress cycle than leaf conductance in H. annuus, but not in H. petiolaris. But as with other plant responses to water stress, the differences between the two species were small.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 45 (1979), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: This study reports the effect of rate of development of leaf water deficits in soil-grown sorghum (Sorghum bicolor) on the relationship of net photosynthesis, leaf conductance, and water use efficiency to leaf water potential, and on the degree of solute accumulation (osmotic adjustment). Recovery of these processes on rewatering, and responses during a second stress cycle were also studied. The most rapid rate of stress (1.2 MPa day−1) resulted in no solute accumulation and the lowest rate of net photosynthesis and leaf conductance for any given leaf water potential during stress. Stress at 0.7 and 0.15 MPa day−1 led to equal solute accumulations of approximately 0.6 MPa, but net photosynthesis, leaf conductance, and water use efficiency at a given leaf water potential were lower with the faster rate of stress (0.7 MPa day−1). Additionally, leaf conductance at a given leaf turgor potential was lowest at the 1.2 MPa day−1 stress rate, slightly higher at the intermediate rate of stress, and clearly highest at the slowest rate of stress. Recovery of both net photosynthesis and leaf conductance upon rewatering was rapid, taking less than 3 days, but full recovery of osmotic potential took between 6 and 11 days. One slow stress cycle had no influence on relationships during a second cycle. The concept of a threshold leaf water potential for stomatal closure is discussed and the conclusion reached that stomatal closure occurs slowly over a wide range of leaf water potential (〉 1.0 MPa), the range being greater for slower rates of stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2048
    Keywords: Humidity ; Photosynthesis ; Transpiration ; Water use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of humidity on the gas exchange of leaves of the dicotyledons soybean (Glycine max (L.) Merrill), sunflower (Helianthus annuus L.), jojoba (Simmondsia chinensis (L.) Schneider), and saltbush (Atriplex halimus L.) and the monocotyledons wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) sorghum (Sorghum bicolor (L.) Moench) and barnyard grass (Echinochloa crus-galli (L.) Beauv.) was examined under conditions of adequate soil moisture in a controlled environment. Photosynthesis and stomatal and internal diffusion resistances of whole, attached, single leaves were not affected by changes in humidity as the vapour pressure deficit between the leaf and atmosphere ranged from 8 to 27 mb. Transpiration increased linearly with increasing vapour pressure deficit. Whole plants of barley exhibited a different response. As humidity was increased, photosynthesis increased, transpiration expressed per unit of vapour pressure difference increased, and diffusion resistances became smaller. Reasons for the different behaviour of single leaves and whole plants are suggested. An index for water use efficiency, expressed per millibar of vapour pressure deficit, was calculated for single leaves of each species used in the experiments. This showed that water use efficiency was highest in the C4 xerophytes and lowest in the C3 mesophytes. The effect of environment on water use efficiency is examined using data from the literature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Planta 132 (1976), S. 19-23 
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In this paper, experiments are described which examine the effect of requirement for assimilates by the ear on the rate of net photosynthesis in leaves of wheat (Triticum aestivum L.). Different levels of requirement were achieved by various levels of sterilization of florets just before anthesis, which resulted in a range of grain numbers per ear, and by inhibiting photosynthesis of the intact ear by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Only the ear and two uppermost leaves of the main shoot were considered, all the lower leaves and tiller leaves being excised when the experimental treatments were imposed. In two experiments, tiller regrowth was permitted during the experimental period, while in a third, new tillers were defoliated regularly. The response of leaf photosynthesis to the level of assimilate requirement by the ear was influenced by the treatment of the vegetative tillers. Thus, the net photosynthesis rate of the flag leaf was decreased by a reduction in grain number, or increased by inhibition of photosynthesis in the ear, only when the vegetative tillers were kept defoliated; when these tillers were allowed to re-grow normally, there was no influence of ear treatment on leaf photosynthesis. Temporal changes in leaf photosynthesis were consistent with this response pattern, i.e., when tillers were defoliated, the initial high rates of photosynthesis persisted for much longer. In the experiment where photosynthesis was influenced by the requirement for assimilate in the ear, the variation occurred through change in stomatal conductance on the abaxial surface of the leaf. This surface has a lesser conductance to CO2 exchange than the adaxial surface. The implication of this finding to rapid methods of plant screening is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Irrigation science 4 (1983), S. 167-175 
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Crops of the early sunflower hybrid Suncross 150, and the later-maturing, open-pollinated sunflower Manchurian, were grown during a dry summer season when pan evaporation exceeded 200 mm per month. They were irrigated once only at 5 weeks, 7 weeks, 9 weeks or 11 weeks after sowing. There were also frequently irrigated and unirrigated treatments. The frequently irrigated treatments yielded most at equivalent to 2.24 t ha−1 in Suncross 150 and 3.69 t ha−1 in Manchurian, while the corresponding unirrigated yields were 1.05 t ha−1 and 1.97 t ha−1. In the single-irrigation treatments, the highest yields in both cultivars resulted from water application 3 weeks before anthesis, though the effect was not significant in Suncross 150. The better yields were associated primarily with the presence of more live leaf area during early grain filling (Table 2), but the efficiency of distribution of dry matter to the seed was also important in Suncross 150. Relationships between maximum green leaf area (A) and seed yield (Y) were well described by the curve Y=93.4A 0.794 (Fig. 2, Table 4), in accordance with earlier studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...