Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd.
    Journal of metamorphic geology 16 (1998), S. 0 
    ISSN: 1525-1314
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: Kyanite replaces andalusite in a belt of Ordovician and Silurian pelitic rocks that form a narrow synform pinched between high-grade antiforms in NW Variscan Iberia. Kyanite occurs across the belt in Al-rich, black pelites in assemblages I: kyanite–chloritoid–chlorite–muscovite and II: kyanite–staurolite– chlorite–muscovite. In I, kyanite occurs in the matrix and in kyanite–muscovite aggregates that pseudomorph earlier andalusite porphyroblasts. The aggregates are found across the belt and can still be recognized in assemblage II and even in III: andalusite–staurolite–biotite–muscovite, this latter being a hornfelsic Silurian schist where kyanite is relic and staurolite occurs in the matrix, and is resorbed inside new massive pleochroic andalusite. KFMASH and MnKFMASH pseudosections have been constructed using Thermocalc for Al-rich and Al-poorer compositions from the belt. Chloritoid zoning in Al-rich rocks containing assemblage I, plus chloritoid–chlorite thermometry complemented with garnet–chlorite thermometry in Al-poorer lithologies, mean that the path is one of increasing pressure and temperature. Conditions prior to assemblage I, with earlier andalusite stable, are those of the andalusite–chloritoid– chlorite field as testified by chloritoid enclosed in andalusite porphyroblast rims. The passage from assemblage I to II implies a prograde path within the kyanite field. Assemblage III represents peak conditions, indicating a prograde staurolite-consuming reaction across a KFMASH field, leading eventually to a locally found andalusite–biotite–muscovite hornfels. The lowest pressure stages are recorded by cordierite–biotite in Al-poor pelites. Garnet-bearing MnKFMASH assemblages in Al-poorer pelites record conditions similar to assemblages II and III. The replacement of andalusite by kyanite in assemblage I is attributed to downdragging of andalusite-bearing rocks into a synform as testified by the strained andalusite porphyroblasts affected by a subvertical crenulation cleavage. Prograde metamorphism in the eastern contact of the belt is due to heat transferred to the belt from the ascending high grade antiform across the Vivero fault.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1525-1314
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: The exceptional andalusite–kyanite–andalusite sequence occurs in Al-rich graphitic slates in a narrow pelite belt on the hangingwall of a ductile normal fault in NW Variscan Iberia. Early chiastolite is replaced by Ky–Ms–Pg aggregates, which are overgrown by pleochroic andalusite near granites intruded along the fault. Slates plot in AKFM above the chloritoid-chlorite tie-line. Their P–T grids are modelled with Thermocalc v2.7 and the 1998 databases in the NaKFMASH and KFMASH systems. The univariant reaction Ctd + And/Ky = St + Chl + Qtz + H2O ends at progressively lower pressure as F/FM increases and A/AFM decreases, shrinking the assemblage Cld–Ky–Chl, and opening a chlorite-free Cld–Ky trivariant field on the low temperature reaction side. This modelling matches the observed absence of chlorite in high F/FM rocks, which is restricted to low pressure in the andalusite stability field.The P–T path deduced from modelling shows a first prograde event in the andalusite field followed by retrogression into the kyanite field, most likely coupled with a slight pressure increase. The final prograde evolution into the andalusite field can be explained by two different prograde paths. Granite intrusion caused the first prograde part of the path with andalusite growth. The subsequent thermal relaxation, together with aH2O decrease, generated the retrograde andalusite–kyanite transformation, plus chlorite consumption and chloritoid growth. This transformation could have been related to folding in the beginning, and aided later by downthrowing due to normal faulting. Heat supplied by syntectonic granite intrusion explains the isobaric part of the path in the late stages of evolution, causing the prograde andalusite growth after the assemblage St–Ky–Chl. Near postectonic granites, a prograde path with pressure decrease originated the assemblage St–And–Chl.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1525-1314
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: Andalusite porphyroblasts are totally pseudomorphosed by margarite–paragonite aggregates in aluminous pelites containing the peak mineral assemblage andalusite, chlorite, chloritoid, margarite, paragonite, quartz ± garnet, in a NW Iberia contact area. Equilibria at low P–T are investigated using new KFMASH and (mainly) MnCNKFMASH grids constructed with Thermocalc 3.21. P–T and T–X pseudosections with phase modal volume isopleths are constructed for compositions relatively richer and poorer in andalusite to model the assemblages in an andalusite-bearing rock that contains a thin andalusite-rich band (ARB) during retrogression. Their compositions, prior to retrogression, are used in the modelling, and have been retrieved by restoring the pseudomorph-forming elements into the current-depleted matrix, except for Al2O3 which is assumed to be immobile. Compositional differences between the thin band and the rest of the rock have not resulted in differences in andalusite porphyroblast retrogression. The absence of chloritoid resorbtion implies either a pressure increase at constant reacting-system composition, or that its composition changed during retrogression at constant pressure, by becoming enriched in the progressively replaced andalusite porphyroblasts. T–X pseudosections at 1 kbar model this latter process using as end-members in X, first, the restored original rock and ARB compositions, and, then the same process, taking into account the change in composition of both as retrogression proceeded. The MnNCKFMASH pseudosections of rocks with different Al contents facilitate making further deductions on the rock-composition control of the resulting assemblages upon retrogression. Andalusite eventually disappears in relatively Al-poor rocks, resulting, as in this study, in a rock formed by chloritoid–chlorite as the only FM minerals, plus margarite–paragonite pseudomorphs of andalusite. In rocks richer in Al, chlorite would progressively disappear and a kyanite/andalusite–chloritoid assemblage would eventually be stable at retrograde conditions. The Al-silicate, stable during retrogression in Al-rich rocks, indicates pressure conditions and hence the tectonic context under which retrogression took place.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Inc
    Journal of metamorphic geology 22 (2004), S. 0 
    ISSN: 1525-1314
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Geologie und Paläontologie
    Notizen: Metapelitic rocks in the low pressure contact metamorphic aureole around the Susqueda igneous complex, Spain show a number of features that make them an ideal testing ground for the modelling of silica-undersaturated melting. Rocks in the aureole experienced localized depletion in silica by the segregation of quartz veins during a pre-anatectic, regional cordierite-andalusite grade metamorphic event. These rocks were then intruded by gabbroic to dioritic rocks of the Susqueda igneous complex that formed a migmatitic contact metamorphic aureole in the country rocks. This migmatisation event caused quartz-saturated hornfels and restite formation in rocks that had experienced no quartz vein segregation in the previous regional metamorphic event, but silica-undersaturated melting in those rocks that were previously depleted in silica. Silica-undersaturated melting is investigated using a new petrogenetic P–T projection and equilibrium pseudosections calculated in the KFMASH and NCKFMASH systems, respectively. The grid considers quartz absent equilibria and a range of phases that form typically in silica-undersaturated bulk compositions, for example corundum. It is shown that the quartz-rich precursors in the Susqueda contact aureole produced about 10% melt during contact metamorphism. However, most of this melt was extracted leaving behind rocks with restitic bulk compositions and minor leucosome segregation. It is suggested that the melt mixed with the host igneous rocks causing an apparent magmatic zoning from diorite in the centre of the complex to tonalite at the margins. In contrast, the quartz-poor precursors (from which the quartz veins segregated) melted in the silica-undersaturated field producing a range of assemblages including peritectic corundum and spinel. Melting of the silica-undersaturated rocks produced only negligible melt and no subsequent melt loss.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...