Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 400 (1999), S. 566-569 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Advances in genetics and molecular biology have provided an extensive body of information on the structure and function of the elementary building blocks of living systems. Genetic defects in membrane ion channels can disrupt the delicate balance of dynamic interactions between the ion channels ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of noninvasive electrocardiology 4 (1999), S. 0 
    ISSN: 1542-474X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Background:Cardiac arrhythmias continue to be a leading cause of death and disability. Despite this alarming fact, a noninvasive imaging modality for cardiac electrophysiology (EP) has not been developed. Standard electrocardiographic techniques attempt to infer electrophysiological processes in the heart from a limited number of recordings on the body surface. This traditional approach is limited in its ability to provide information on regional electrocardiac activity and to localize electrophysiological events in the heart (e.g., arrhythmogenic foci; regions of elevated dispersion of myocardial repolarization). This article reviews the development of a novel imaging modality (electrocardiographic imaging [ECGI]) for the reconstruction of cardiac electrical activity from potentials measured away from the heart (i.e., on the torso surface). The results presented demonstrate that ECGI can noninvasively reconstruct epicardial potentials, electrograms, and isochrones with good accuracy and resolution. Results:The locations of ectopic pacing sites are reconstructed within 10 mm of their actual positions. Dual epicardial pacing sites separated by 52 mm, 35 mm, and 17 mm can be resolved. The depth of intramural ectopic activity can be estimated and the direction of intramural activation spread can be determined from the reconstructed epicardial potential pattern and its evolution in time. Results from infarcted hearts demonstrate that ECGI can detect and reconstruct the abnormal electrophysiological substrate associated with the infarct. The figure-of-eight pattern of reentrant activation in the epicardial border zone during ventricular tachycardia is also reconstructed by ECGI noninvasively. Conclusions:These results demonstrate the potential of ECGI as a clinical noninvasive imaging modality for identifying patients at risk of cardiac arrhythmias and for guiding and evaluating antiarrhythmic interventions in such patients. A.N.E. 1999;4(3):340–359
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of cardiovascular electrophysiology 10 (1999), S. 0 
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The complex discontinuous architecture of cardiac tissue induces a number of interactions between the cellular properties of the myocardium that affect impulse propagation:1. Slow (〈 10 cm/sec) conduction velocities in the myocardium can only be achieved by discontinuous conduction. In the more continuous type of conduction, as occurring during inhibition of INa, conduction block occurs at velocities of approximately 20 cm/sec.2. If the discontinuity reaches a critical degree, Ica, L is needed to propagate the cardiac impulse. This situation may occur during cell-to-cell uncoupling and at sites of local tissue discontinuities.3. The conduction phenomena occurring at tissue discontinuities, such as pivoting points, isthmus, and abrupt tissue expansions are markedly influenced by the underlying properties of the cellular network. Electrical uncoupling at the cellular level can reduce the effect of the discontinuities to produce conduction block and reverse unidirectional block to bidirectional conduction. By contrast, reduction of INa increases the probability of unidirectional block at such sites. Since activation of INa may become rate-dependent at high rates and in depolarized tissue, this predicts an instability in activation patterns during a tachycardia.Do the above considerations really predict arrhythmogensis? It is obvious that increasing the degree of structural discontinuity creates a substrate for reentrant arrhythmias. However, with the exception of the demonstration of spiral wave initation in vitro,5 no direct effects of tissue discontinuities on arrhythmia initiation have been demonstrated so far. Furthermore, pathologies associated with an increased degree of structural discontinuities, such as a hypertrophy and failure, also show an increased propensity to triggered arrhythmias, and initiation of ventricular tachcardias from small foci has been observed in whole hearts. These complexities make it difficult to extrapolate findings of experimental and theoretical work at the cellular level directly to whole hearts and human pathologies where several mechanisms for initiation and maintenance of tachycardias may coexist.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of cardiovascular electrophysiology 10 (1999), S. 0 
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of cardiovascular electrophysiology 10 (1999), S. 0 
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of cardiovascular electrophysiology 10 (1999), S. 0 
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of cardiovascular electrophysiology 12 (2001), S. 0 
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Torso Effects on Reconstructed Epicardial Potentials. Introduction: Noninvasive electrocardiographic imaging (ECGI) involves inverse reconstruction of epicardial potentials, electrograms (EGMs), and isochrones from body surface potential maps (BSPMs). The heart lies in a volume conductor that includes lungs, blood, bone, muscle, and fluid. We investigate the effects of these torso inhomogeneities on reconstructed epicardial potentials, EGMs, and isochrones to address the issue of whether they should be included in clinical ECGI methodology. Methods and Results: Potential data were obtained for different pacing protocols from a dog heart suspended in a human-shaped torso tank. Accurate geometry of torso inhomogeneities was digitized from the Visual Human Project and appropriately introduced into a computer model of the torso. Three models were used: accurate inhomogeneous torso, homogeneous torso, and a torso with stylized lungs (to generate an approximate model). The inhomogeneous model was used to compute BSPMs from the measured epicardial potentials. These BSPMs were the starting point for inverse computations in the different torso models. Epicardial potential maps, EGMs, and isochrones were computed. The homogeneous model produced slightly less accurate epicardial potential reconstructions than the inhomogeneous model and stylized lung model, but epicardial potential patterns, EGMs, isochrones, and locations of pacing sites were reconstructed with comparable accuracy when torso inhomogeneities were ignored. Conclusion: The results demonstrate that, in the clinical application, it is not necessary to include torso inhomogeneities for noninvasive reconstructions of epicardial potentials, EGMs, and activation sequences.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of cardiovascular electrophysiology 6 (1995), S. 0 
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Reentrant Activity in Cardiac Tissue. This review article summarizes theoretical insights into the principles and mechanisms associated with reentrant activity in cardiac tissue. A mathematical ring model is used in computer simulations to investigate, at the cellular level, mechanistic aspects of initiation, perpetuation, and termination of reentry. Taking advantage of the ability to compute membrane processes in this model, we relate dynamic properties of the reentrant action potential (e.g., beat-to-beat alternans) to the underlying kinetics of membrane ionic channels. Effects on reentry of inhomogeneities in refractoriness, excitability, cellular coupling at gap junctions, and fiber cross-section are also studied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of cardiovascular electrophysiology 11 (2000), S. 0 
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    350 Main Street , Malden , MA 02148-5018 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK . : Blackwell Science Inc
    Journal of cardiovascular electrophysiology 14 (2003), S. 0 
    ISSN: 1540-8167
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...