Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0885-4505
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 184 (1992), S. 746-751 
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-6903
    Keywords: Citric acid cycle enzymes ; hyperammonemia ; cytosol ; mitochondria ; synaptosomes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Activity levels of pyruvate dehydrogenase, enzymes of citric acid cycle, aspartate and alanine aminotransferases were estimated in mitochondria, synaptosomes and cytosol isolated from brains of normal rats and those injected with acute and subacute doses of ammonium acetate. In mitochondria isolated from animals treated with acute dose of ammonium acetate, there was an elevation in the activities of pyruvate, isocitrate and succinate dehydrogenases while the activities of malate dehydrogenase (malate→oxaloacetate), aspartate and alanine aminotransferases were suppressed. In subacute conditions a similar profile of change was noticed excepting that there was an elevation in the activity of α-ketoglutarate dehydrogenase in mitochondria. In the synaptosomes isolated from animals administered with acute dose of ammonium acetate, there was an increase in the activities of pyruvate, isocitrate, α-ketoglutarate and succinate dehydrogenases while the changes in the activities of malate dehydrogenase, asparatate and alanine amino transferases were suppressed. In the subacute toxicity similar changes were observed in this fraction except that the activity of malate dehydrogenase (oxaloacetate→malate) was enhanced. In the cytosol, pyruvate dehydrogenase and other enzymes of citric acid cycle except malate dehydrogenase were enhanced in both acute and subacute ammonia toxicity though their activities are lesser than that of mitochondria. In this fraction malate dehydrogenase (oxaloacetate→malate), was enhanced while activities of malate dehydrogenase (malate→oxaloacetate), aspartate, and alanine aminotransferases were suppressed in both the conditions. Based on these results it is concluded that the decreased activities of malate dehydrogenase (malate→oxaloacetate) in mitochondria and of aspartate, aminotransferase in mitochondria and cytosol may be responsible for the disruption of malate-aspartate, shuttle in hyperammonemic state. Possible existence of a small vulnerable population of mitochondria in brain which might degenerate and liberate their contents into cytosol in hyperammonemic states is also suggested.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Metabolic brain disease 10 (1995), S. 249-255 
    ISSN: 1573-7365
    Keywords: Ornithine transcarbamylase ; hyperammonemia ; sparse-fur mouse ; [3H]MK801 ; NMDA receptors ; urea cycle disorders
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Alterations of excitatory amino acid neurotransmitters have previously been described in brain in congenital ornithine transcarbamylase (OTC) deficiency. In order to further elucidate the role of the glutamatergic neurotransmitter system in OTC deficiency, densities of binding sites for [3H]MK801, an NMDA receptor antagonist ligand were measured by quantitative receptor autoradiography in the brains of chronically hyperammonemic sparse-fur mice (spf), mutant mice with a congenital defect of OTC. [3H]MK801 binding site densities were significantly reduced by up to 57% (p〈0.01) in 16 out of 17 brain regions of OTC-deficient mice. Such changes could result from either neuronal cell loss in these animals or from “down-regulation” of these sites as a consequence of exposure to increased extracellular concentrations of glutamate or quinolinic acid, two known endogenous NMDA receptor ligands previously found to be increased in brain in chronic hyperammonemic syndromes. Reduced NMDA receptor densities in congenital OTC deficiency could represent an adaptive mechanism of protection against further excitotoxic brain injury.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-7365
    Keywords: Ornithine transcarbamylase deficiency ; congenital hyperammonemia ; sparse-fur (spf) mouse ; cerebral amino acids ; seizures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Congenital deficiencies of the urea cycle enzyme ornithine transcarbamylase (OTC) result in chronic hyperammonemia and severe neurological dysfunction including seizures and mental retardation. As part of a series of studies to elucidate the pathophysiologic mechanisms responsible for the CNS consequences of OTC deficiency, concentrations of ammonia-related and neurotransmitter amino acids were measured as their o-phthalaldehyde derivatives using high performance liquid chromatography with fluorescence detection in regions of the brains of sparse-fur (spf) mice, a mutant with an X-linked inherited defect of OTC. Compared to CD-1/Y controls, the brains of spf/Y mutant mice contained significant alterations of several amino acids. A generalized, up to 2-fold, increase of brain glutamine was observed, consistent with the exposure of these brains to increased concentrations of ammonia. Significant increases of brain alanine were also observed and, together with previous reports of increased concentrations of α-ketoglutarate, are consistent with ammonia-induced inhibition of α-ketoglutarate dehydrogenase in the brains of spf/Y mice. Increased brain content of the excitatory amino acid aspartate coul be responsible for the seizures frequently encountered in congenital OTC deficiency.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...