Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The introduction of a divertor Thomson scattering system in DIII-D [J. Luxon et al., International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1986), p. 159] has enabled accurate determination of the plasma properties in the divertor region. Two plasma regimes are identified: detached and attached. The electron temperature in the detached regime is about 2 eV, much lower than 5–10 eV determined earlier. Fluid models of the DIII-D scrape-off layer plasma successfully reproduce many of the features of these two regimes, including the boundaries for transition between them. Detailed comparison between the results obtained from the fluid models and experiment suggest the models underestimate the spatial extent of the low-temperature region associated with the detached plasma mode. Low-temperature atomic physics processes that are not included in the present models may account for this discrepancy. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 5 (1993), S. 2165-2175 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this paper an investigation of the particle confinement for beam-heated single-null discharges in the open divertor configuration of Doublet III-D (DIII-D) [E. J. Doyle et al., Phys. Fluids B 3, 2300 (1991)] is described. Results are based on a Monte Carlo neutral transport model with a relatively simple plasma model that utilizes experimental data on density, temperature, and heat flux profiles in the edge plasma. For a typical discharge, it is found that the particle confinement time in the quiescent H-mode phase is only about a factor of 2 larger than during the L-mode phase, an increase comparable to the energy confinement time increase. For both H-mode and L-mode phases the particle confinement time is about a factor of 4 larger than the energy confinement time. It is also found that the core plasma fueling rate is higher in the H mode due to the increased transparency of a thinner scrape-off layer. The longer particle confinement time and the increased fueling rate both contribute to the observed density rise during the quiescent period following the L–H transition. Flux surface-averaged transport modeling of the time evolution for the core plasma density profile during H mode suggests that a strong inward particle pinch is necessary near the separatrix.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The transport of impurity ions in a magnetically confined plasma is studied in the region between their origin at a material surface and the core plasma as defined by closed magnetic flux surfaces. The focus is physics understanding of the results of two-dimensional (2-D) transport modeling of the plasma and neutrals. A simple one-dimensional model is introduced to identify key processes and illustrate how such processes affect the core-edge impurity level. The 2-D simulation gives detailed results of scaling of the impurity level with parameters such as anomalous radial diffusion, hydrogen–plasma recycling, core power flux, and core-edge density. The results are obtained for a slab model of a tokamak, but by changing the magnetic connection length, scaling to other types of devices can be inferred. Lithium and fluorine impurities are considered explicitly as examples with low and moderate charge-state number, Z, for liquid wall materials; trends found for these cases provide guidance to the behavior of other impurities. The tolerable amount of impurity influx can be closely associated with the partial thermal collapse of the edge plasma. The results are used to provide a physics picture of previous results on the acceptable evaporative impurity flux from different types of liquid wall materials, and to show how these results can be expected to scale with parameters. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The energy and flux of charge-exchange neutrals from the sloshing ions in the endplug of tandem-mirror-experiment upgrade were measured using solid-state probes. An average energy of the sloshing ions of 6 keV was inferred from the depth profile of deuterium implanted in a silicon sample exposed to the charge-exchange neutrals. A bounce-averaged Fokker–Planck code was used to calculate the sloshing-ion energy distribution. The calculated depth profile of deuterium in the silicon sample resulting from this energy distribution is in good agreement with the measured profile. Carbon resistance probes were used to measure the charge-exchange flux from which the central chord sloshing-ion line density was inferred. The line density of particles with energies〉2 keV was deduced to account for 60% of the total plasma line density in the endplug. By folding the sloshing-ion line density into the diamagnetic loop data, it was shown that the 1/e radial extent of the sloshing ions remained relatively constant from shot to shot at 14 cm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...