Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant systematics and evolution 188 (1993), S. 237-269 
    ISSN: 1615-6110
    Keywords: Bryophytes ; ferns ; gymnosperms ; seed plants ; land plants ; Antheridia ; cladistics ; gametogenesis ; phylogeny ; spermatogenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cladistic analysis was carried out to resolve phylogenetic pattern among bryophytes and other land plants. The analysis used 22 taxa of land plants and 90 characters relating to male gametogenesis.Coleochaete orChara/Nitella were the outgroups in various analyses using HENNIG86, PAUP, and MacClade, and the land plant phylogeny was unchanged regardless of outgroup utilized. The most parsimonious cladograms from HENNIG86 (7 trees) have treelengths of 243 (C.I. = 0.58, R.I. = 0.82). Bryophytes are monophyletic as are hornworts, liverworts, and mosses, with hornworts identified as the sister group of a liverwort/moss assemblage. In vascular plants, lycophytes are polyphyletic andSelaginella is close to the bryophytes.Lycopodium is the sister group of the remaining vascular plants (minusSelaginella). Longer treelengths (over 250) are required to produce tree topologies in which either lycophytes are monophyletic or to reconstruct the paraphyletic bryophyte phylogeny of recent authors. This analysis challenges existing concepts of bryophyte phylogeny based on more classical data and interpretations, and provides new insight into land plant evolution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Bryophyte ; Notothylas ; Nuclear metamorphosis ; Phaeoceros ; Posterior mitochondrion ; Spermatogenesis ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ultrastructural observations reveal that the spermatozoids of the hornwortsNotothylas andPhaeoceros contain two mitochondria and not one as described previously. Mitochondrial ontogeny and nuclear metamorphosis during spermiogenesis in these plants differ from all other archegoniates. The discovery that the posterior region of the coiled nucleus (when viewed from the anterior aspect) lies to the left of the anterior, in striking contrast to the dextral coiling of the nucleus of spermatozoids of other embryophytes, underlines the isolated nature of the hornworts among land plants. As the blepharoplast develops, the numerous ovoid mitochondria initially present in the nascent spermatid fuse to form a single elongated organelle which is positioned subjacent to the MLS and extends down between the nucleus and plastid. At the onset of nuclear metamorphosis, the solitary mitochondrion has separated into a larger anterior mitochondrion (AM) associated with the MLS and a much smaller posterior mitochondrion (PM) adjacent to the plastid. The PM retains its association with the plastid and both organelles migrate around the periphery of the cell as the spline MTs elongate. By contrast, in moss spermatids, where mitochondria undergo similar fusion and division, the AM is approximately the same size as the PM and the latter is never associated with the spline. As in other archegoniates, except mosses, spline elongation precedes nuclear metamorphosis in hornworts. Irregular strands of condensed chromatin compact basipetally to produce an elongated cylindrical nucleus which is narrower in its mid-region. During this process excess nucleoplasm moves rearward. It eventually overarches the inner surface of the plastid and entirely covers the PM.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1615-6102
    Keywords: Centrin ; Multilayered structure ; Bryophyte spermatid ; Pteridophyte spermatid ; Microtubule organizing center
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The multilayered structure (MLS), a component of the locomotory complex of plant sperm, has been utilized extensively by taxonomists in establishing phylogenetic relationships between the lower plants and algae. Unfortunately, there has been almost no biochemical characterization of the MLS and, in those studies that did attempt a characterization, conflicting results were obtained. We utilized antisera to the calcium-binding protein centrin to probe thin sections of the mid-stage spermatids of the anthocerotePhaeoceros laevis, the hepaticSphaerocarpos texanus, and the pteridophyteCeratopteris richardii embedded in L. R. White resin. The lamellar strip (LS; layers S2–S4) of the MLS in each of these species is labelled strongly with anti-centrin, but the S1 layer, composed of microtubules, is not. InCeratopteris, centrin is also detected in the amorphous electron opaque material that connects the basal bodies of the flagella. Both the MLS and the amorphous zones are putative microtubule organizing centers. Extracts from axenic cultures ofCeratopteris subjected for electrophoresis and Western blotting revealed a reactive band at 19.3 kDa, a protein similar in molecular mass to algal centrin. These data indicate that the MLS is composed at least partially of the protein centrin or a protein antigenically-related to centrin. This report is the first electron microscopic immunocytochemical demonstration that a centrin homologue is found in land plants and that it occurs at putative microtubule organizing centers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant systematics and evolution 204 (1997), S. 125-140 
    ISSN: 1615-6110
    Keywords: Charophyceae ; Charales ; Chara vulgaris ; Green alga ; charophyte ; spermatozoid ; ultrastructure ; early land plant phylogeny
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract At maturity, spermatozoids of the green algaChara vulgaris are biflagellated, contain little cytoplasm, and coil for approximately 2 1/2 gyres within the mother cell wall. The anterior of the cell contains an ovoid headpiece anchoring two slightly staggered basal bodies that are positioned above and directly in front of approximately 30 linearly arranged mitochondria. An elongated stellate pattern occupies the transition zone between the BBs and axonemes. Flagella emerge from the cell just in front of the nucleus and encircle the full length of the spermatozoid. The spline comprises a maximum of 38 microtubules surrounding the anterior mitochondria and gradually decreases posteriorly to a minimum of 11. The dense nucleus is narrow, cylindrical, and occupies the central revolution of the cell. Six starch-laden plastids and associated mitochondria are linearly arranged at the cell posterior. Phylogenetic analyses of charalean taxa and archegoniates based on spermatogenesis strongly support the orderCharales, withNitella as the sister group toChara. Diagnostic features ofChara spermatozoids include absence of a lamellar strip and axonemes embedded in the cell for almost the entire length of the anterior mitochondria. Potential relationships amongCharales, Coleochaetales and archegoniates are evaluated in regards to the probable course of evolution of streamlined biflagellated gametes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...