Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Key engineering materials Vol. 115 (Sept. 1995), p. 1-20 
    ISSN: 1013-9826
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 7 (1988), S. 1257-1259 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The present investigation was undertaken to characterize the microstructure of controlled nucleation thermochemical deposition (CNTD)-SiC material and to evaluate the room-temperature and high-temperature bend strength and oxidation resistance. Utilizing the CNTD process, ultrafine grained (0.01 to 0.1μm) SiC was deposited on W wires (0.5 mm diameter by 20cm long) as substrates. The deposited SiC rods had superior surface smoothness and were without any macrocolumnar growth commonly found in conventional CVD material. At both room and high temperature (1200 to 1380° C), the CNTD-SiC exhibited a bend strength of ~ 200 000 psi (1380 MPa), several times higher than that of hot-pressed, sintered, or CVD SiC. The excellent retention of strength at high temperature was attributed to the high purity and fine grain size of the SiC deposit and the apparent absence of grain growth at elevated temperatures. The rates of weight change for CNTD-SiC during oxidation were lower than for NC-203 (hot-pressed SiC), higher than for GE's CVD-SiC and CVD-Si3N4 but considerably below those for HS-130 (hot-pressed Si3N4). The high-purity fully dense and stable grain size CNTD-SiC material shows potential for high-temperature structural applications, however, problem areas might include scaling the process to make larger parts, deposition on removable substrates, and the possible residual tensile stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 19 (1984), S. 895-914 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Experimental studies and analysis of literature data show that while refinements are needed in fracture mechanics models of pores as flaws in glasses, such models are in reasonable overall agreement with observed strength behaviour. Thus, in glasses, single pores are generally “blunter” flaws than machining or other cracks. However, in polycrystalline materials single pores generally act as sharp cracks. Reasons for this glass-polycrystalline difference in terms of mechanisms and their relation to the models are discussed, along with differences in predicted and observed fracture paths. Quite variable and complex behaviour is indicated for origins from two or more pores in glass and polycrystalline bodies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 36 (1990), S. 481-510 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Processing of ceramics is reviewed from a broad perspective, with emphasis on the predominant powder-based methods, but with considerable attention to other methods. Major stages of the powder process, from preparation, modification, and handling, to sintering or pressure densification (or postdensification) are discussed. Nonpowder-based methods, such as chemical vapor deposition, melt, and polymer pyrolysis processing, are also presented. Processing of ceramic composites is reviewed, noting the shifts in processing technology this entails. Practical aspects, such as part size, shape, volume, and the costs of various processes are also addressed.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...