Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1471-4159
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Abstract: Acetylcholinesterase (AChE) is found both in motor end-plate (MEP)-free and MEP-rich regions of rat or mouse muscle. We studied the developmental aspects of the localization of asymmetric 16S AChE in both regions of the sternocleidomastoid muscle, which has a well-defined zone of motor innervation. In the rat, the proportion of 16S AChE to total AChE increases in the MEP-rich region, and becomes significantly higher than in the MEP-free regions between the first and the second weeks after birth. In the mouse, at birth, the MEP-rich region already has a higher relative content in 16S AChE than the MEP-free regions. Total 16S AChE amounts increase during postnatal development, not only in the MEP-rich region but also in the MEP-free regions. Thus, 16S AChE is not eliminated from MEP-free regions during muscle maturation and growth. Two distinct pools of 16S AChE are distinguished in the muscles, both of which increase during postnatal development: junctional and background 16S AChE.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Biochemistry 29 (1990), S. 914-920 
    ISSN: 1520-4995
    Quelle: ACS Legacy Archives
    Thema: Biologie , Chemie und Pharmazie
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1460-9568
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: M-cadherin belongs to the Ca2+-dependent cadherin family of cell adhesion molecules and was first isolated from a mouse muscle cell line cDNA library. It is specifically expressed in muscle tissue during development and is supposed to play an important role in secondary myogenesis. In the present study the expression of M-cadherin mRNA and protein and its localization were investigated in adult mouse skeletal muscle and peripheral nerve. The mRNA was abundant in embryonic legs from embryonic day (E)14 to E18. It remained expressed in new-born and adult muscles. In the adult muscle M-cadherin immunoreactivity was only detected at the neuromuscular junction, associated with perijunctional mononucleated cells and on intramuscular nerves. Peripheral nerves were also M-cadherin-positive. The molecule was found at the surface of myelinated nerve fibres where it was concentrated at the node of Ranvier. When a nerve was crushed and allowed to regenerate, M-cadherin was over-expressed at the site of nerve injury and in the distal stump. M-cadherin was also up-regulated on the sarcolemma of denervated muscle fibres. Taken together, these observations point toward a much wider tissue distribution of M-cadherin than previously thought. M-cadherin might be involved not only in specific steps of myogenesis but also in some aspects of synaptogenesis, axon/Schwann cell interactions and node of Ranvier structural maintenance.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] Figure 1a shows action potentials and contractions evoked by anodal break stimulation in control (+/mdg?) myotubes bathed in a 140 mM Na+ solution containing 1.8mM Ca2+. Action potentials were followed by a long-lasting after-hyper-polarization (a.h.p.) due to the activation of a ...
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    ISSN: 1573-6830
    Schlagwort(e): butyrylcholinesterase ; synthetic mRNA ; Xenopus oocytes ; coinjection ; tissue specificity
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary 1. To approach the involvement of tissue-specific elements in the compartmentalization of ubiquitous polymorphic proteins, immunohistochemical methods were used to analyze the localization of butyrylcholinesterase (BuChE) inXenopus oocytes microinjected with synthetic BuChEmRNA alone and in combination with tissue-extracted mRNAs. 2. When injected alone BuChEmRNA efficiently directed the synthesis of small membrane-associated accumulations localized principally on the external surface of the oocyte's animal pole. Tunicamycin blocked the appearance of such accumulations, suggesting that glycosylation is involved in the transport of nascent BuChE molecules to the oocyte's surface. Coinjection with brain or muscle mRNA, but not liver mRNA, facilitated the formation of pronounced, tissue-characteristic BuChE aggregates. 3. These findings implicate tissue-specific mRNAs in the assembly of the clone-produced protein and in its nonuniform distribution in the oocyte membrane or extracellular material.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Developmental Dynamics 202 (1995), S. 126-136 
    ISSN: 1058-8388
    Schlagwort(e): Muscular dysgenesis ; Myogenic induction ; Desmin promoter ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin
    Notizen: Muscular dysgenesis (mdg) is a recessive lethal mutation in the mouse which drastically affects skeletal muscle development during embryonic life. Physiologically, the disease is characterized by a complete paralysis resulting from a lack of excitation-contraction coupling. Existing electrophysiological, biochemical, and genetic evidence shows that mdg/mdg mice express a basic alteration of L-type voltage-sensitive Ca2+ channels in skeletal muscle. Studies on mdg/mdg myotubes in primary culture have shown that +/+ fibroblasts or +/+ Schwann cells may fuse with them and correct their functional deficiency by genetic complementation. As the spontaneous formation of heterocaryons is thought to be an exclusive property of myoblasts, we asked whether fibroblasts may have changed their properties before fusion occurred. We used primary cells issued from sciatic nerves dissected from newborn transgenic mice carrying the pHuDes1-nls-LacZ transgene (Des-LacZ cells) as non-muscle cells. These cells were mainly fibroblasts (80%) positive for Thy 1.1 and Schwann cells positive for S100. The cultures were negative for myogenic markers (desmin, troponin T), did not form myotubes long-term, and did not display significant activation of the muscle reporter gene (pHuDes1-nls-LacZ). After a few days in coculture with dysgenic or normal myotubes, the muscle reporter gene (β-galactosidase) was detected both within dysgenic myotubes, correlating with the restoration of normal contractile activity, and normal myotubes. As well as confirming that fusion takes place, this shows that Des-LacZ cells nuclei incorporated into recipient myotubes express their own myogenic genes. Moreover, individual mononucleated Des-LacZ cells expressing β-galactosidase were observed, indicating that myogenic genes were being expressed before fusion. This suggests a mechanism of myotube driven myogenic recruitment of cells during the in vitro myogenesis. Analysis of the distribution of the induced Des-LacZ cells (positive for β-galactosidase) in compartmentalized muscle cocultures showed that in the presence of dysgenic myotubes, these cells were equally distributed in both myotube free and enriched areas, whereas in the presence of normal myotubes, the positive cells remained in close vicinity of the myotubes. This difference could be explained by the fact that the dysgenic phenotype might include release of the induction process from its normal controls. Our results are consistent with the idea of a transcellular mechanism triggering myogenic differentiation in non-muscle cells, and that myotubes themselves are able to drive myogenic recruitment of cells during the in vitro myogenesis. This phenomenon could be the result of either a myogenic induction in non-muscle cells, imposing a phenotypic change, or the activation of pre-myoblastic quiescent cells by the myotubes themselves. © 1995 Wiley-Liss, Inc.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    ISSN: 1573-6830
    Schlagwort(e): acetylcholinesterase (AChE) ; 16 S AChE molecular form ; glycolipid attachment ; hydrophobic anchor ; phospholipase C
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary 1. We analyzed the mode of attachment of 16 S tailed acetylcholinesterase (AChE; EC 3.1.1.7) to rat superior cervical ganglion (SCG) neuronal membranes. Using extractions by high-salt (HS) and nonionic detergent (Triton X-100), we found two pools of 16 S AChE. 2. The detergent-extracted (DE) 16 S AChE was tightly bound to membranes through detergent-sensitive, high-salt insensitive interactions and was distinct from high-salt-soluble 16 S AChE. The detergent-extracted (DE) 16 S AChE constituted a significant proportion of about one-third of the total 16 S AChE. 3. Treatment of the neuronal membranes by a phosphatidylinositol-specific phospholipase C (PIPLC) resulted in the release of some, but not all DE 16 S AChE, indicating that a significant amount of the neuronal DE 16 S AChE, about one-third, is anchored to membranes through a phosphatidylinositol containing residue. Thus, a covalent association of a glycolipid and catalytic or structural AChE polypeptidic chains occurs not only for dimeric AChE but also for the asymmetric species of AChE. 4. The complex polymorphism of AChE is due not only to different globular or asymmetric associations of catalytic and structural subunits but also to the alternative existence of a transmembrane domain or a glycolipid membrane anchor.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...