Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 782 (1996), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The Escherichia coli penicillin G amidase (PGA), which is a key enzyme in the production of penicillin G derivatives is generated from a precursor polypeptide by an unusual internal maturation process. We observed the accumulation of the PGA precursor polypeptide in the insoluble material recovered after sonication of recombinant E. coli JM109 cells grown at 26°  C. The aggregated nature of the accumulated molecules was demonstrated using detergents and chaotropic agents in solubilization assays. The periplasmic location of the aggregates was shown by trypsin-accessibility experiments performed on the spheroplast fraction. Finally, we showed that addition of sucrose or glycerol in the medium strongly reduces this periplasmic aggregation and as a consequence PGA production is substantially increased. Thus, periplasmic aggregation of the PGA precursor polypeptide limits PGA production by recombinant E. coli and this limitation can be overcome by addition in the medium of a non-metabolizable sugar, such as sucrose, or of glycerol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The Escherichia coli penicillin G amidase (PGA), which is a key enzyme in the production of penicillin G derivatives is generated from a precursor polypeptide by an unusual internal maturation process. We observed the accumulation of the PGA precursor polypeptide in the insoluble material recovered after sonication of recombinant E. coli JM109 cells grown at 26°C. The aggregated nature of the accumulated molecules was demonstrated using detergents and chaotrophic agents in solubilization assays. The periplasmic location of the aggregates was shown by trypsin-accessibility experiments performed on the spheroplast fraction. Finally, we showed that addition of sucrose or glycerol in the medium strongly reduces this periplasmic aggregation and as a consequence PGA production is substantially increased. Thus, periplasmic aggregation of the PGA precursor polypeptide limits PGA production by recombinant E. coli and this limitation can be overcome by addition in the medium of a non-metabolizable sugar, such as sucrose, or of glycerol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 14-24 
    ISSN: 0006-3592
    Keywords: penicillin G amidase ; Escherichia coli ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, we constructed various recombinant E. coli HB101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic and (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selected based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the Hindlll fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene. © 1993 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...