Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 82 (1985), S. 3045-3066 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The dynamics of the F+H2 reaction have been investigated in a high resolution crossed molecular beam study. Differential cross sections and kinetic energy distributions were obtained for each HF vibrational state. The v=1 and v=2 states were predominantly backward scattered, but substantial forward scattering was observed for HF (v=3) over the range of collision energies accessible in our apparatus, from 0.7 to 3.4 kcal/mol. The results strongly suggest that dynamical resonances play a significant role in the reaction dynamics of F+H2 and that resonance effects are most prominent in the v=3 product channel. Quantal reactive scattering calculations on F+H2 predict that the v=2 channel should be most strongly affected by resonances. This discrepancy is attributed to inadequacies in the potential energy surface used in the calculations, and several modifications to the surface are proposed based on the experimental results. Other features of the reaction are also discussed, including the integrated partial cross sections, the effect of H2 rotation, and the reactivity of F(2P1/2).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 82 (1985), S. 3067-3077 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The F+D2 and F+HD reactions were investigated in a high resolution crossed molecular beams experiment at several collision energies. The DF product from both reactions was predominantly backward scattered although some forward scattered DF(v=4) was observed at the highest energy studied. The HF angular distributions from F+HD were quite different, showing considerable forward scattered (v=3) and no other identifiable structure. These results disagree with classical trajectory studies, which predict only small variations in the product angular distributions among F+H2 and its isotopic variants. They agree, however, with the predicted dependence of dynamical resonance effects on isotopic substitution. The results therefore support the conclusions drawn in the previous paper regarding the role of dynamical resonances in the F+H2 reaction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 95 (1991), S. 4186-4189 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 14 (1982), S. 1053-1055 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 11 (1979), S. 1045-1053 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Using dimethyl peroxide as a thermal source of methoxy radicals overthe temperature range of 110-160°C, and the combination of methoxy radicals and nitrogen dioxide as a reference reaction: a value was determined of the rate constant for the reaction of methoxy radicals with oxygen: is independent of nitrogen dioxide or oxygen concentration and added inert gas (carbon tetrafluoride). No heterogeneous effects were detected. The value of k4 is given by the expression \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm log }k_4 {\rm = 9}{\rm .0} \pm {\rm 0}{\rm .6 - 4}{\rm .8 } \pm {\rm 1}{\rm .1/}\theta {\rm (M}^{{\rm - 1}} \cdot \sec ^{ - 1}) $$\end{document} In terms of atmospheric chemistry, this corresponds to a value of 105.6 M-1·sec-1 at 298 K. Extrapolation to temperatures where the combustion of organic compounds has been studied (813 K) produces a value of 107.7 M-1·sec-1 for k4. Under these conditions, reaction (4) competes with hydrogen abstraction or disproportionation reactions of the methoxy radical and its decomposition (3): In particular k3 is in the falloff region under these conditions. It is concluded that reaction (4) takes place as the result of a bimolecular collision process rather than via the formation of a cyclic complex.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 19 (1987), S. 391-400 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: By allowing the t-butoxy radical to decompose in the presence of nitric oxide, it has been possible to determine rate constants for decomposition by the measurements of the relative rates (2) and (3) Process (3) is clearly pressure dependent. The value of k3(∞) has been determined in the presence of several inert gases (CF4, SF6, N2, and Ar) and a value of k3 interpolated for atmospheric conditions. The results may be compared with those for other relevant alkoxy radicals at room temperature. Extrapolated values for k3 in the presence of CF4 lead to the result \documentclass{article}\pagestyle{empty}\begin{document}$$ k_3 (\infty)/s^{ - 1} = 10^{14.6 \pm 0.6} \exp (- 8052 \pm 604/T) $$\end{document}
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...