Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 194 (1962), S. 88-89 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Several paper chromatographic solvent systems using descending solvent-flow were examined at 22 C. Bush-type systems1, such as benzene-ethanol-water, were unsatisfactory because of the time required for development of the chromatogram plus the resulting poor separation. A Zaffaroni-iype system2, ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 34 (1990), S. 10-14 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary A key intermediate (S(−) 2-cyclohexyl-1,3-propanediol monoacetate) was made with high optical purity for the total synthesis of a new angiotensin converting enzyme inhibitor, Fosinopril. The stereoselective hydrolysis of 2-cyclohexyl-1,3-propanediol diacetate (I) and 2-phenyl-1,3-propanediol diacetate (II) was carried out with lipases. Among various lipases evaluated, only porcine pancreatic lipase (PPL) and Chromobacterium viscosum lipase demonstrated efficient conversion and gave the desired enantiomer of monoacetate. In aqueous solution, the desired S(−) monoacetate exhibited an optical purity of 65%–80% (30%–60% enantiomeric excess [e.e.]). However, when the same reactions were conducted in a biphasic system, the product S(−) monoacetate exhibited an optical purity of 99%–100% (98%–100% e.e.). The high purity product was achieved with 65 mol% yield at 1% substrate concentration. Among various solvents evaluated in biphasic systems, efficient hydrolysis was achieved in toluene, cyclohexane, and trichloro-trifluoroethane. The crude PPL was partially purified and two lipase fractions (A and B) were identified. Lipases A and B had a molecular mass of 38 000 and 40 000 daltons, respectively, and both were found to catalyze the hydrolysis of I and II to the appropriate monoacetate in a biphasic system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 11 (1969), S. 1211-1225 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We have studied the influence of strain of organism, temperature, and medium on the production of the antileukemic intracellular enzyme L-asparaginase by E. coli B grown in shaken flasks. Five strains of E. coli B exhibited wide differences in their capacities to synthesize the EC-2 form of L-asparaginase active against leukemia. For the most productive strain, when grown in a casein hydrolysate medium, maximal production of L-asparaginase occurred at 25°C. At this temperature, the organism required glycerol, glucose, or other mono-saccharides to synthesize L-asparaginase. Synthesis was stimulated when glycerol was used in place of glucose, but not in its presence. The effect of glycerol on L-asparaginase synthesis was most evident when the cells were grown at 37°C, rather than at 25°C. With 0.25% glucose, cells had a specific activity of 409 I.U./g; with glycerol cells had a specific activity of 553 I.U./g. At 25°C, both cell and L-asparaginase synthesis were increased by the use of 0.25% glycerol resulting in only a slight increase in specific activity of the cells. The addition of zinc, copper, manganese, iron, L-asparagine, L-glutamine, or L-aspartic acid had no effect on L-asparaginase synthesis in the casein hydrolysate medium. L-aspartic acid (10-2 M) enhanced L-asparaginase synthesis in a synthetic medium that lacked these metals or L-asparagine, L-glutamine, or L-aspartic acid; cells grown under these conditions had a specific activity of 90 I.U./g.In the casein hydrolysate medium, cell morphology was correlated with temperature of incubation.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...