Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1327
    Keywords: Key words Iron ; Ferritin ; Ferroxidase ; Carboxyl modification ; Taurine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  When either horse spleen apoferritin (containing more than 90% of L chains) or recombinant horse L apoferritin are modified with glycineamide or taurine in the presence of a water-soluble carbodiimide, a total of 11 to 12 carboxyl groups per subunit are modified, and iron incorporation is effectively abolished. In contrast, when horse spleen ferritin (containing on average 2500 atoms per molecule) is modified under similar conditions, seven to eight carboxyl groups are modified. When apoferritin is prepared from this modified ferritin, it retains full iron incorporation activity. Apoferritin in which seven to eight carboxyls per subunit have been modified by glycineamide can subsequently be modified by taurine; a total of three to four carboxyl groups are modified accompanied by total loss of iron incorporation. Additional studies confirm that three carboxyl groups per subunit are protected from modification by glycineamide by Cr(III) inhibition of iron incorporation. Using tandem mass spectroscopy we have looked for taurine-labelled peptides in tryptic digests of succinylated apoferritins after taurine modification. In the sample where the residues involved in iron uptake have been modified with taurine, we have identified the peptide: This corresponds to residues 53–59 of the L subunit, where it is part of a region of the B-helix which is directed towards the inside of the apoferritin protein shell. The same peptide was identified using classical protein sequencing techniques after (1,2-3H)-taurine modification. We conclude that in L-chain apoferritins the Glu residues at positions 53, 56 and 57 are involved in the mechanism of iron incorporation. Glu 53 and 56 are conserved in L but not in H ferritins, and are located in close proximity to each other within the three-dimensional structure. There is ample room for rotation of Glu 57 to join with the other two to form an iron-binding site. This may represent a site of iron incorporation (most probably involving nucleation) unique to L-chain ferritins, and may explain the predominant L-chain involvement in conditions of iron overload.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1327
    Keywords: Key words Recombinant horse apoferritin ; X-ray structure ; Stability ; Function
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  The X-ray structure of recombinant horse L-chain (rL) apoferritin, solved at 2.0 Å resolution with a final R factor of 17.9%, gives evidence that the residue at position 93 in the sequence is a proline and not a leucine, as found in earlier sequencing studies. The structure is isomorphous with other apoferritin structures, and we thus draw particular attention to those structural features which can be related to the stability and function of the protein. Analysis of hydrogen bonding and salt bridge interactions shows that dimers and tetramers are the most stable molecular entities within the protein shell: a result confirming earlier biophysical experiments. The stability of horse rL apoferritin to both dissociation into subunits at acidic pH values and to complete unfolding in guanidine chloride solutions is compared with that of other apoferritins. This emphasizes the role played by the salt bridge in the stability of this protein family. The horse rL apoferritin is significantly more resistant to denaturation than horse spleen ferritin, which in turn is more resistant than any human rH apoferritins, even those for which a salt bridge is restored. Finally, this structure determination not only establishes that a preformed pocket exists in L-chain apoferritin, at a site known to be able to bind porphyrin, but also underlines the particular function of a cluster of glutamic acids (E53, E56, E57 and E60) located at the entrance of this porphyrin-binding pocket.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...