Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1424
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Transcellular electrical profiles ofKalanchoë leaf cells were obtained by pushing a glass micro-saltbridge through cells with the tip consecutively in the cell wall, cytoplasm, and vacuole. The electrical resistance of the cell wall was too small to be detectable, that of the plasmalemma and tonoplast was about 0.18–0.21 and 0.16–0.18 Ωm2, respectively. The electrical potential difference between the cytoplasm and the external medium,ψ co , was ≈−180 mV, the potential difference between the vacuole and the medium,ψ vo , was ≈−155mV, and thus the mean potential difference at the tonoplast,ψ vc , was about +25 mV. Potential difference,ψ vo , was independent of proton concentration in the external medium between pH 9 and 5.5, and behaved like an H+-electrode between pH 5 and 3. Depolarizations and hyperpolarizations ofψ vo obtained by increasing and decreasing, respectively, the Na+-concentrations in the medium were smaller than with changing K+-concentrations, suggesting that permeabilities areP Na +/P K +≈-0.23. Assessment of K+-compartmentation by flux analysis gave K+-concentrations in the cytoplasm including chloroplasts (c c) and vacuole (c v) asc c between 200 and 400 mmol kg−1 FrWt andc v ≈-15 mmol kg−1 FrWt. The Nernst criterion suggests that metabolically regulated K+ transport out of the vacuoles concentrates K+ in the cytoplasm. Fusicoccin (10−5 m) hyperpolarizedψ co by about 100 mV and depolarized the positiveψ vc by about 10 mV, the latter presumably being an insignificant effect. The evidence for the existence of proton pumps exchanging H+ and K+ at the plasmalemma and at the tonoplast is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The purpose of our work was to investigate the functioning of K+ channels in protoplasts of laticifers of Hevea brasiliensis Muell. Arg., anastomosed into a network devoid of large central vacuoles, after tapping stress. Physiological functions such as proton pump activity and uptake of sucrose (a rubber precursor) were maintained, when the voltage-clamp method was used in vivo to record the whole-cell K+ current during the stress response.A time-dependent inward current was induced in 50 mM KCl and rapidly inactivated (about 100 ms). The activation potential of this inward K+ channel was not closely dependent on Ek. This would be coherent with the ‘valve model’ of Schroeder and Fang (1991, Proc. Natl. Acad. Sci. USA 88: 11583–11587) involving the activation of a H+-pump accounting for the K+ uptake observed in laticiferous cells under stress. The activation half-time of outward currents was clearly voltage dependent: from about 350 to 60 ms for 125 and 155 mV, respectively. Time-dependent outward current sensitivity to 5 mM BaCl2 or CaCl2 or to 5 μM Erythrosin B showed that the K+ channels could be Ca2+-dependent. Because of the positive values of the activation potential of the outward current, the possibility opens that an action potential exists, these cells being specialized for stress response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 113 (2001), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Little is known about the early response of roots to desiccation. Young growing root hairs of Arabidopsis thaliana, Vigna unguiculata and Phaseolus vulgaris were used to study the early response of roots to desiccation since they behave like sensors that are able to perceive environmental signals. In control conditions, root hairs were polarized around −120 mV and displayed inward rectifying K+ currents. When submitted to short-term desiccation, root hairs stopped their tip growth and their membrane became depolarized. Under these conditions, the K+ influx carried by the inward rectifying K+ channels was not maintained and instead slow deactivating anion channels were recorded. The inhibition of K+ influx and the large anion efflux due to the activation of slow anion currents could participate in the inhibition of tip growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 67 (1986), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Nomarski interference microscopy technique showed that the cell juice of the Kiwi fruit (Actinidia chinensis Planch.) is rich in membrane vesicles that resemble protoplasts and free vacuoles. These vesicles are obtained without enzyme or chemical treatment and probably arise from the rupture and revesiculation of the tonoplasts that limit the cytoplasmic strands of the cells. Vacuole fragmentation in situ probably causes the tonoplast to recombine around the vacuolar sap as well as around the cytoplasmic strands, which implies either original or inverse orientation of the inner face. Electrophysiological measurements in vesicles judged to have the original membrane orientation showed that their polarization was inside positive, the same as central vacuoles of protoplasts and isolated vacuoles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Vacuoles were isolated from leaves of Kalanchoë daigremontiana Hamet et Perrier de la Bathie, and the ionic sensitivity of the vacuolar ATPase was studied in vacuole homogenates desalted on Sephadex G-25. The ATPase activity was dependent on the presence of divalent cations (Mg2+≥ Mn2+≥ Ca2+, Co2+; Zn2+ had no effect). Mg2+-dependent ATPase activity was stimulated by anions (Cl− 〉 malate2+, HCO−3), with maximal stimulation at concentrations above 50 mM. Mg2+-Dependent activity was inhibited by NO−3 above 2 mM, but no saturation was observed up to 100 mM. No stimulation by K+ or Na+ was detected; stimulation by NH+4 was abolished by 0.01% (w/v) Triton X-100, suggesting that the NH+4 effect was due to the permeability of vacuolar membrane vesicles to NH3.Trans-tonoplast electrical potentials (Δψ) and intra-vacuolar pH were measured with glass microelectrodes and antimony covered glass micro-pH-electrodes, respectively. Free vacuofes isolated from Kalanchoë tubiflora (Harv.) Hamet were slightly positive with respect to the suspension medium. This Δψ was insensitive to the protonophore FCCP and depolarized by about 4 mV on addition of 50 mM KCl, still remaining about +5 mV. Upon addition of 7 mM Mg-ATP, vacuoles showed an FCCP-sensitive increase of Δψ from +9.2 ± 2.8 (13) to +17.8 ± 3.7 (12) mV [given as x̄± sd (n)] and an internal acidification from pH 5.4 ± 0.2 (11) to pH 4.3 ± 0.4 (12). Mg-ADP and ATP without Mg2+ had no effect on Δψ.It is concluded that the H4 pumping at the tonoplast is due to the functioning of the anion-sensitive vacuolar ATPase and that this is an essential part of the mechanism of nocturnal acid accumulation in CAM.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...