Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: etomidate ; pharmacokinetics ; pharmacodynamics ; rat ; electroencephalogram
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Purpose. The effect-plasma concentration relationship of etomidate was studied in the rat using electroencephalographic changes as a pharmacodynamic parameter. Methods. Etomidate was infused (50 mg/kg/h) in chronically instrumented rats (n = 6) until isoelectric periods of 5 s or longer were observed in the electroencephalogram (EEG). The EEG was continuously recorded during the experiment and frequent arterial blood samples were taken for determination of etomidate plasma concentrations. The changes observed in the raw EEG signal were quantified using aperiodic analysis in the 2.5−7.5 Hz frequency band. The return of the righting reflex was used as another parameter of anesthesia. Results. A mean dose of 8.58 ± 0.41 mg/kg needed to be infused to reach the end point of 5 s isoelectric EEG. The plasma concentration time profiles were most adequately fitted using a three-exponential model. Systemic clearance, volume of distribution at steady-state and elimination half-life averaged 93 ± 6 ml/min/kg, 4.03 ± 0.24 l/kg and 59.4 ± 10.7 min respectively. The EEG effect-plasma concentration relationship was biphasic exhibiting profound hysteresis. Semi-parametric minimization of this hysteresis revealed an equilibration half-life of 2.65 ± 0.15 min, and the biphasic effect-concentration relationship was characterized nonparametrically by descriptors. The effect-site concentration at the return of the righting reflex was 0.44 ± 0.03 μg/ml. Conclusions. The results of the present study show that the concentration-effect relationship of etomidate can be characterized in individual rats using aperiodic analysis in the 2.5−7.5 Hz frequency band of the EEG. This characterization can be very useful for studying the influence of diseases on the pharmacodynamics of etomidate in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...