Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: After a single intraperitoneal injection of the irreversible tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA; 300 mg/kg), there was a rapid down-regulation of serotonin (5-HT) transporter mRNA levels in cell bodies. This change was significant at 1 and 2 days after PCPA administration within the ventromedial but not the dorsomedial portion of the dorsal raphe nucleus. Seven days after PCPA treatment, 5-HT transporter mRNA levels were significantly elevated compared with controls in both regions of the dorsal raphe nucleus. PCPA administration produced no change in the [3H]-citalopram binding and synaptosomal [3H]5-HT uptake in terminal regions at 2 and 7 days after treatment but significantly reduced both these parameters by ∼20% in the hippocampus and in cerebral cortex 14 days after PCPA administration. The striatum showed a lower sensitivity to this effect. No significant changes were observed in the levels of [3H]citalopram binding to 5-HT cell bodies in the dorsal raphe nucleus. In the same animals used for 5-HT transporter mRNA level measurements, levels of tryptophan hydroxylase mRNA in neurons of the ventromedial and dorsomedial portions of the dorsal raphe nucleus were increased 2 days after PCPA administration and fell to control levels 7 days after injection in the ventromedial region but not in the dorsomedial portion of the dorsal raphe nucleus, where they remained significantly higher than controls. Altogether, these results show that changes in 5-HT transporter mRNA are not temporally related to changes in 5-HT transporter protein levels. In addition, our results suggest that the 5-HT transporter and tryptophan hydroxylase genes are regulated by different mechanisms. We also provide further evidence that dorsal raphe 5-HT neurons are differentially regulated by drugs, depending on their location.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 575 (1989), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Following administration of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 0.04–5.0 μg/0.5 μl) in the raphe nucleus dorsalis (DR) or medianus (MR), the synthesis of serotonin (5-HT), as assessed by the accumulation of 5-hydroxytryptophan (5-HTP) after decarboxylase inhibition, was measured in various regions of the rat CNS. At all doses, 8-OH-DPAT in the DR significantly reduced 5-HTP accumulation in the striatum, nucleus accumbens, cortex, and prefrontal cortex, whereas even the highest dose had no effect in the hippocampus, hypothalamus, and spinal cord. One microgram of 8-OH-DPAT in the MR significantly reduced 5-HTP accumulation in the nucleus accumbens and prefrontal cortex, and 5 μg had an effect in all the areas except the striatum and spinal cord. One and 5 μg of 8-OH-DPAT, administered in either the DR or MR, did not significantly modify the accumulation of dihydroxyphenylalanine in the striatum and nucleus accumbens. The results confirm that DR and MR have different sensitivities to 5-HT1A receptor agonists, and that activation of 5-HT1A receptors in these nuclei produces different effects on 5-HT synthesis in different brain regions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: [3H]Norepinephrine ([3H]NE) efflux from preloaded rat Hippocampal slices was increased in a dose-dependent manner by excitatory amino acids, with the following order of potencies: N-methyl-D-aspartate (NMDA) 〈 kainic acid (KA) 〈 L-glutamate ≥ D,L-homocysteate 〈 L-aspartate 〈 quinolinic acid 〈 quisqualic acid. The effect of the excitatory amino acids was blocked by physiological concentrations of Mg2+, with the exception of KA. D.,L-2-Amino-7-phosphonoheptanoic acid dose-dependently inhibited the NMDA effect (ID50= 69 μM), whereas at 1 mM it was ineffective versus KA. The release of [3H]-NE induced by quinolinic acid was blocked by 0.1 mM D,L-2-amino-7-phosphonoheptanoic acid. γ-D-Glutamyl-glycine dose-dependently inhibited the KA effect with an ID50 of 1.15 mM. Tetrodotoxin (2 μM) reduced by 40 and 20% the NMDA and KA effects, respectively. The data indicate that [3H]NE release from hippocampal slices can be used as a biochemical marker for pharmacological investigations of excitatory amino acid receptors and their putative agonists and antagonists.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract : Fluoxetine at 10 and 25 mg/kg increased (167 and 205%, respectively) the extracellular dopamine concentration in the prefrontal cortex, whereas 25 (but not 10) mg/kg citalopram raised (216%) dialysate dopamine. No compound modified dialysate dopamine in the nucleus accumbens. The effect of 25 mg/kg of both compounds on cortical extracellular dopamine was not significantly affected by 300 mg/kg p-chlorophenylalanine (PCPA) (fluoxetine, saline, 235% ; PCPA, 230% ; citalopram, saline, 179% ; PCPA, 181%). PCPA depleted tissue and dialysate serotonin by ~90 and 50%, respectively, and prevented the effect of fluoxetine and citalopram on dialysate serotonin (fluoxetine, saline, 246% ; PCPA, 110% ; citalopram, saline, 155% ; PCPA, 96%). Citalopram significantly raised extracellular serotonin from 0.1 to 100 μM (251-520%), whereas only 10 and 100 μM increased dialysate dopamine (143-231%). Fluoxetine similarly increased extracellular serotonin (98-336%) and dopamine (117-318%). PCPA significnatly reduced basal serotonin and the effects of 100 μM fluoxetine (saline, 272% ; PCPA, 203%) and citalopram (saline, 345% ; PCPA 258%) on dialysate serotonin but did not modify their effect on dopamine (fluoxetine, saline, 220% ; PCPA, 202% ; citalopram, saline, 191% ; PCPA, 211%). The results clearly show that the effects of fluoxetine and of high concentrations of citalopram on extracellular dopamine do not depend on their effects on serotonin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The present study investigated whether 5-HT2C receptors in the ventrotegmental area and prefrontal cortex regulate basal and stimulus-evoked dopamine release in the prefrontal cortex. Using the in vivo microdialysis technique in conscious rats, we studied the effect of a selective 5-HT2C receptor agonist, Ro60–0175, on basal and immobilization stress-induced dopamine release in the prefrontal cortex. Ro60–0175 intraperitoneally (2.5 mg/kg) and into the ventrotegmental area (10 µg/0.5 µL) completely antagonized the effect of stress on extracellular dopamine without altering basal levels. Infusion of 10 µm Ro60–0175 through the cortical probe had no significant effect on basal and stress-induced dopamine release. SB242084 (10 mg/kg), a selective antagonist of 5-HT2C receptors, significantly increased basal extracellular dopamine and completely prevented the effect of intraperitoneal and intraventrotegmental Ro60–0175 on the stress-induced rise of extracellular dopamine, but had no effect itself in stressed rats. The results show that Ro60–0175 suppresses cortical dopamine release induced by immobilization stress through the stimulation of 5-HT2C receptors in the ventrotegmental area. While confirming that endogenous 5-HT acting on 5-HT2C receptors tonically inhibit basal dopamine release in the prefrontal cortex, the present findings suggest that the stimulation of 5-HT2C receptors with an exogenous agonist preferentially inhibit stimulated release.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The suggestion that somatostatin is involved in the pathophysiology of obsessive-compulsive disorder and the evidence that selective serotonin reuptake inhibitors show significant antiobsessional effect prompted us to examine the effect of citalopram, a selective and potent serotonin reuptake inhibitor, on the somatostatinergic system in different brain regions of the rat. A single intraperitoneal injection of 10 mg/kg citalopram significantly reduced somatostatin levels in the striatum and nucleus accumbens after 4 but not 1, 8, or 24 h. No changes were found in hippocampus. In addition, we found that the K+-evoked overflow of somatostatin-like immunoreactivity from striatal slices was significantly increased 1 h after a single injection of citalopram and was still higher, although not significantly, 4 h after the drug injection. Levels of preprosomatostatin mRNA were unchanged in striatum and accumbens 1 and 4 h after a single drug administration. In rats treated with citalopram (10 mg/kg i.p.) twice daily for 14 days, the levels of somatostatin and its mRNA were significantly decreased in the striatum but not in other brain regions 24 h after the last dose. No change was found in the basal or K+-evoked overflow of somatostatin-like immunoreactivity at 1, 4, and 24 h after the last drug injection. These results suggest that acute and chronic treatment with citalopram reduces somatostatin levels in striatum by different mechanisms. Whereas a single dose of the drug reduces somatostatin levels by increasing the release of the peptide, repeated drug treatment reduces the biosynthesis of somatostatin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The axonal growth-associated protein GAP-43 is believed to play some role in the synaptic remodelling that takes place in the hippocampus of adult rats after certain experimental lesions. GAP-43 mRNA is highly expressed in adult CA3 pyramidal cells but almost absent in the dentate granule cells. We analysed whether the sprouting of granule cell axons, the mossy fibres of the hippocampus, caused by kainic acid-induced seizures in adult rats was associated with any induction of GAP-43 mRNA in granule cells and with any changes in the immunostaining pattern of GAP-43 in the hippocampus. Increased GAP-43 mRNA expression was found to be induced in granule cells 18, 24 and 30 h after a systemic injection of kainic acid which induced generalized seizures in adult rats, and returned to control levels by 48 h post-treatment. No effect was observed in other regions of the hippocampus. However, when kainic acid was injected into 15-day-old rats, which responded with generalized seizures but no sprouting of mossy fibres, there was no induction of GAP-43 mRNA in the granule cells, suggesting a close relation between GAP-43 expression and sprouting of these cells. Seven days after kainic acid injections, GAP-43 immunostaining was decreased in the inner molecular layer of the dentate gyrus except for a thin supragranular band, whereas 30 days after treatment all animals showed increased GAP-43 immunoreactivity in the whole inner molecular layer. Since collaterals of mossy fibres grow in the inner molecular layer after kainic acid-induced seizures, these results support the theory that GAP-43 plays a role in synaptic remodelling in the adult central nervous system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 10 (1998), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: This study investigated the effect of stimulating 5-HT1A receptors in the dorsal raphe on the impairment of learning caused by 4 μg/μL scopolamine injected in the CA1 region of the dorsal hippocampus in rats performing a two-platform spatial discrimination task. At 1 (but not 0.2) μg/0.5 μL administered in the dorsal raphe on each acquisition training day 5 min before bilateral intrahippocampal injection of 4 μg/μL scopolamine, 8-hydroxy-2- (di-n-propylamino) tetralin (8-OH-DPAT), a 5-HT1A receptor agonist, had no effect on choice accuracy and latency or errors of omission but completely antagonized the impairment of choice accuracy by intrahippocampal scopolamine. Administered into the dorsal raphe at 0.2 and 1 μg/0.5 μL, WAY 100635, a 5-HT1A receptor antagonist, had no effect on rats’ performance or on the impairment caused by intrahippocampal scopolamine but dose-dependently antagonized the effect of 1 μg/0.5 μL 8-OH-DPAT on the scopolamine-induced deficit. The results show that stimulation of presynaptic 5-HT1A receptors in the dorsal raphe reverses the deficit caused by intrahippocampal scopolamine, probably by facilitating the transfer of facilitatory information from the entorhinal cortex to the hippocampus. Together with a previous study showing that blockade of postsynaptic hippocampal 5-HT1A receptors antagonized the effect of intrahippocampal scopolamine in the two-platform spatial discrimination task ( Carli et al. 1995b ), the results suggest that drugs with presynaptic stimulatory and postsynaptic blocking actions on 5-HT1A receptors, such as partial agonists at these receptors, may be useful in the symptomatic treatment of human memory disturbances associated with loss of cholinergic innervation to the hippocampus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 10 (1998), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Several lines of evidence indicate that neuropeptide Y (NPY)-mediated neurotransmission in the hippocampus is altered by limbic seizures. The functional consequences of this change are still unresolved and clearly depend on the type of NPY receptors involved. We have investigated the role of NPY Y1 receptor subtypes, which are enriched in the dentate area of the hippocampus, on EEG seizures induced by a local injection of 0.04 μg kainic acid in rats.Intrahippocampal administration of 10 μg BIBP3226 (N2- (diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]d-arginamide), a non-peptide selective antagonist at the NPY Y1 receptors, increased threefold on average (P 〈 0.01) the time to onset of seizures and reduced the number of seizures and the total time in seizures three- and fourfold, respectively (P 〈 0.01). Its inactive S-enantiomer BIBP3435 was ineffective on seizure activity. One microgram [Leu31,Pro34]NPY, an agonist at Y1 receptors, did not modify per se the EEG sequelae induced by kainic acid but it antagonized the anticonvulsant effect of BIBP3226.These results indicate that NPY Y1 receptors in the hippocampus are involved in epileptic phenomena and suggest that selective Y1 receptor antagonists may be of value for attenuating limbic seizures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...