Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 64 (1994), S. 97-99 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: This study shows for the first time that a combination of Al treatment on the back, oxide passivation on the front, and 400 °C forming gas anneal in the presence of Al, raised the double-layer antireflection-coated edge-defined film-fed grown (EFG) silicon cell efficiency from 7.8% to 14.1%. Front oxide passivation contributed an ∼0.8% increase in absolute cell efficiency, Al diffusion on the back increased the efficiency by 1.4% (absolute), and the forming gas anneal (FGA) after the Al diffusion improved the cell efficiency by an additional 4.1% (absolute). A combination of the above three steps improved the EFG cell efficiency by 6.3%, indicating that the above three effects are complimentary. Oxide passivation reduced front surface recombination velocity and Al diffusion, while FGA improved diffusion length via gettering. We propose that the large increase in cell efficiency produced by the forming gas anneal results from bulk defect passivation by atomic hydrogen generated in the processing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...