Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Chicago : Periodicals Archive Online (PAO)
    Social service Review. 2:1/4 (1928:Mar./Dec.) 37 
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Density dependence ; Predator-prey interaction ; Searching behavior ; Functional response ; Prey specialization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Behavioral responses by three acarine predators, Phytoseiulus persimilis, Typhlodromus occidentalis, and Amblyseius andersoni (Acari: Phytoseiidae), to different egg and webbing densities of the spider mite Tetranychus urticae (Acari: Tetranychidae) on rose leaflets were studied in the laboratory. Prey patches were delineated by T. urticae webbing and associated kairomones, which elicit turning back responses in predators near the patch edge. Only the presence of webbing affected predator behavior; increased webbing density did not increase patch time. Patch time increased with increased T. urticae egg density in the oligophagous P. persimilis, but was density independent in the polyphagous species T. occidentalis and A. andersoni. Patch time in all three species was more strongly correlated with the number of prey encounters and attacks than with the actual prey number present in the patch. Patch time was determined by (a) the turning back response near the patch edge; this response decayed through time and eventually led to the abandonment of the patch, and (b) encounters with, and attacks upon, prey eggs; these prolonged patch time by both an increment of time spent in handling or rejecting prey and an increment of time spent searching between two successive prey encounters or attacks. Although searching efficiency was independent of prey density in all three species, the predation rate by P. persimilis decreased with prey density because its searching activity (i.e. proportion of total patch time spent in searching) decreased with prey density. Predation rates by T. occidentalis and A. andersoni decreased with prey density because their searching activity and success ratio both decreased with prey density. The data were tested against models of predator foraging responses to prey density. The effects of the degree of polyphagy on predator foraging behavior were also discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Density dependence ; Aggregation ; Predator-prey interaction ; Spatial scale ; Prey specialization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Aggregative responses by the predatory mites, Phytoseiulus persimilis, Typhlodromus occidentalis, and Amblyseius andersoni (Acari: Phytoseiidae), to spatial variation in the density of mobile stages of Tetranychus urticae (Acari: Tetranychidae) were studied over different spatial scales on greenhouse roses. Significant spatial variations in prey numbers per leaflet, per leaf, per branch or per plant were present in all experimental plots. None of the predator species responded to prey numbers per plant, and all searched randomly among plants. Within a plant, the oligophagous P. persimilis searched randomly among branches, but aggregated strongly among leaves within a branch and among leaflets within a leaf. The narrowly polyphagous T. occidentalis searched randomly among leaflets within a leaf and amond leaves within a branch, but aggregated strongly among leaflets or leaves within a plant. The boradly polyphagous A. andersoni searched randomly among leaflets within a leaf, a branch or a plant, and among leaves within a branch or a plant, but distributed themselves more often on branches with lower prey densities. Thus, specialist predators aggregate strongly at lower spatial levels but show random search at higher spatial levels, whereas generalist predators show random search at lower spatial levels but aggregate at higher spatial levels. This is the first empirical evidence demonstrating the relation between the degree of polyphagy and the spatial scale of aggregation. It is also concluded that both the prey patch size (i.e. grain) and predator foraging range (i.e. extent) are important for analyzing spatial scales of predator aggregation. The importance of studying spatial scale of aggregation is also discussed in relation to predator-prey metapopulation dynamics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 90 (1992), S. 185-196 
    ISSN: 1432-1939
    Keywords: Foraging behavior ; Aggregation ; Predation ; Spatial density dependence ; Predator-prey interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Responses of the predaceous mites Phytoseiulus persimilis, Typhlodromus (=Metaseiulus) occidentalis, and Amblyseius andersoni to spatial variation in egg density of the phytophagous mite, Tetranychus urticae, were studied in the laboratory. The oligophagous predator P. persimilis showed initially a direct density dependent foraging time allocation and variation in foraging time increased with prey density. With changes in prey density due to predation, predator foraging rates (per hour) decreased with time and density dependent foraging gradually became density independence, because P. persimilis continued to respond to initial prey density, instead of the changing prey density and distribution. The consequent spatial pattern of predation by P. persimilis was density independent, although slopes of predation rate-prey density regressions increased with time. Compared with P. persimilis, the narrowly polyphagous predator T. occidentalis responded relatively slowly to the the presence or absence of prey eggs but not to prey density: the mean and variation of foraging time spent in patches with prey did not differ with prey density, but was significantly greater in patches with prey eggs than in patches without eggs. Prey density and distribution changed only slightly due to predation and overall foraging rates remained more or less constant. The consequent spatial pattern of predation by T. occidentalis was inversely density dependent. As with P. persimilis, slopes of predation rate-prey density regressions increased with time (i.e. the inverse density dependence in T. occidentalis became weaker through time). The broadly polyphagous predator A. andersoni showed density independent foraging time allocation with variation independent of prey density. With changes in prey density over time due to prey depletion, overall foraging rates decreased. The consequent spatial pattern of predation by A. andersoni also changed through time; it initially was inversely density dependent, but soon became density independent. Overall, P. persimilis and T. occidentalis spent more time in prey patches than A. andersoni, suggesting that A. andersoni tended to spend more time moving outside patches. The overall predation rates and searching efficiency were higher in P. persimilis than in A. andersoni and T. occidentalis. Predator reproduction was highest in P. persimilis, lower in T. occidentalis and the lowest A. andersoni. The differences in response to prey distribution among the three predaceous species probably reflect the evolution of these species in environments with different patterns of prey distribution. The degree of polyphagy is a major determinant of the aggregative response, but other attributes such as handling time are also important in other aspects of phytoseiid foraging behavior (e.g. searching efficiency or predation rate).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1570-7458
    Keywords: inundative biological control ; Aphelinidae ; parasitoids ; Aleyrodidae ; whiteflies ; poinsettia ; area of search ; functional response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The ability of two species of aphelinid parasitoids to find and attack Bemisia argentifolii was determined. Experiments were conducted with whitefly patches on single leaf poinsettia plants randomly distributed in canopies of four commercially grown poinsettia crops at an early and late stage of plant growth. Eretmocerus eremicus found experimental patches in canopies of small and large plants more quickly and frequently, and killed more nymphs following patch discovery than Encarsia formosa (Beltsville strain). E. eremicus exhibited a Type I functional response in small and large canopies while E. formosa (Beltsville strain) showed a Type II functional response in small canopies and a weak linear response in large canopies. In greenhouses treated with E. eremicus, canopy size increased 4.6× and nymphs per plant increased 14.2× between small and large canopy experiments. Consequently, area of search for this parasitoid increased 83%, number of wasps counted on patches decreased 74%, and proportion of nymphs killed in artificial patches decreased 47% between small and large canopies. In greenhouses treated with E. formosa Beltsville strain, canopy size increased 7.3× and nymphs per plant increased 25.4× between small and large canopy experiments. Consequently for E. formosa Beltsville strain, area of search increased 11%, number of wasps counted on patches decreased 86%, and proportion of nymphs killed in artificial patches decreased 47% between small and large canopies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental and applied acarology 21 (1997), S. 393-404 
    ISSN: 1572-9702
    Keywords: Foraging behaviour ; searching efficiency ; predator–prey interaction ; specialization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Prey species often distribute themselves patchily in their habitats.In response to this spatial variation in prey density, some predator speciesaggregate in patches of higher prey density. This paper reviews a seriesof laboratory experiments to demonstrate the patterns of responses byphytoseiid predators (Phytoseiulus persimilis, Typhlodromusoccidentalis and Amblyseius andersoni) to spatial variationin the density of their spider mite prey (Tetranychus urticae)and reveal the behavioural mechanisms underlying the observed patterns.In addition, patterns of aggregation were examined at a variety of spatialscales on plants in greenhouses. The patterns, mechanisms and spatialscale of aggregation in three predatory species are discussed in relationto their varying degrees of polyphagy. The results show that a specialistpredator species (1) aggregates more strongly than generalist predators,(2) does so not because it finds prey patches of high density more easilybut because it remains in these patches longer than generalist predatorsand (3) tends to aggregate more often at lower levels of spatial scalethan generalist predators. It is suggested that these conclusions, basedmainly on laboratory studies of a small sample of species, should be testedin the future on a wider selection of specialist and generalist speciesat different scales in the field.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-1561
    Keywords: Endochitinase ; chitobiosidase ; Trichoplusia ni ; Bemisia argentifolii ; Hypothenemus hampei ; Myzus persicae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The soil bacteria, Streptomyces albidoflavus, secretes endochitinases and chitobiosidases that are active over a broad range of pH (4–10). Ingestion of this mixture of chitinolytic enzymes significantly reduced the growth and development of Trichoplusia ni and significantly reduced survival of Myzus persicae, Bemisia argentifolii, and Hypothenemus hampei. Perfusion chromatography was used to separate endochitinases from chitobiosidases. The endochitinases had significantly greater biological activity against Bemisia argentifolii than the chitobiosidases. The utility of chitinolytic enzymes as regulators of populations of herbivorous insects is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...