Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 105 (1996), S. 6807-6817 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The unimolecular decomposition of expansion-cooled NO3 has been investigated in the threshold regime of the NO+O2 channel. Photoexcitation in the region 16 780–17 090 cm−1 (596–585 nm) prepares ensembles of molecular eigenstates, each of which is a mixture of the B 2E′ bright state and lower electronic states. The X 2A2′ ground state is believed to be the probable terminus of 2E′ radiationless decay, though participation of A 2E″ is also possible. For these photon energies, unimolecular decomposition occurs exclusively via the NO+O2 channel, and NO yield spectra and state distributions have been obtained. The yield spectra are independent of the rotational state monitored, as expected for a large reverse barrier. The state distributions are insensitive to the photolysis photon energy and can be rationalized in terms of dynamical bias. The NO yield goes to zero rapidly above the O+NO2 threshold (17 090±20 cm−1). Because of tunneling, the NO+O2 channel does not have a precise threshold; the value 16 780 cm−1 is the smallest photon energy that yielded signals under the present conditions. Very small decomposition rates were obtained via time-domain measurements in which reactive quenching of long-lived NO3 fluorescence was observed. The rates varied from 1×104 at 16 780 cm−1 to 6×107 s−1 at 16 880 cm−1, and their collision free nature was confirmed experimentally. These data were fitted by using a one-dimensional tunneling model for motion along the reaction coordinate combined with the threshold Rice–Ramsperger–Kassel–Marcus (RRKM) rate. The top of the NO+O2 barrier is estimated to lie at 16 900±15 cm−1. Translational energy measurements of specific NO (X 2ΠΩ,v,J) levels showed that O2 is highly excited, with a population inversion extending to energies above the a 1Δg threshold, in agreement with previous work. It is possible that the main O2 product is X 3∑g−, though some participation of a 1Δg cannot be ruled out. Within the experimental uncertainty, b 1∑+g is not produced. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 99 (1995), S. 7339-7351 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 98 (1994), S. 1058-1060 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 105 (1996), S. 8111-8116 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The photoinitiated unimolecular decomposition of jet-cooled HNCO has been studied following S1(1A″)←S0(1A′) excitation near the thresholds of the spin-allowed dissociation channels: (1) H(2S)+NCO(X2Π) and (2) NH(a1Δ)+CO(X1Σ+), which are separated by 4470 cm−1. Photofragment yield spectra of NCO(X2Π) and NH (a1Δ) were obtained in selected regions in the 260–220 nm photolysis range. The NCO(X2Π)yield rises abruptly at 38 380 cm−1 and the spectrum exhibits structures as narrow as 0.8 cm−1 near the threshold. The linewidths increase only slowly with photolysis energy. The jet-cooled absorption spectrum near the channel (1) threshold [D0(H+NCO)] was obtained using two-photon excitation via the S1 state, terminating in a fluorescent product. The absorption spectrum is similar to the NCO yield spectrum, and its intensity does not diminish noticeably above D0(H+NCO), indicating that dissociation near threshold is slow. The NCO product near threshold is cold, as is typical of a barrierless reaction. NH (a1Δ) products appear first at 42 840 cm−1, but their yield is initially very small, as evidenced also by the insignificant decrease in the NCO yield in the threshold region of channel (2). The NH (a1Δ) yield increases faster at higher photolysis energies and the linewidths increase as well. At the channel (2) threshold, the NH (a1Δ) product is generated only in the lowest rotational level, J=2, and rotational excitation increases with photolysis energy. We propose that in the range 260–230 nm, HNCO (S1) undergoes radiationless decay terminating in S0/T1 followed by unimolecular reaction. Decompositions via channels (1) and (2) proceed without significant exit channel barriers. At wavelengths shorter than 230 nm, the participation of an additional, direct pathway cannot be ruled out. The jet-cooled photofragment yield spectra allow the determination, with good accuracy, of thermochemical values relevant to HNCO decomposition. The following heats of formation are recommended: ΔH0f(HNCO)=−27.8±0.4 kcal/mol, and ΔH0f(NCO)=30.3±0.4 kcal/mol. These results are in excellent agreement with recent determinations using different experimental techniques. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 10774-10783 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The decomposition of jet-cooled HNCO is investigated near the H+NCO channel threshold [D0(H+NCO)=38 370 cm−1]. Dissociation to H+NCO at energies 17–411 cm−1 above D0(H+NCO) proceeds on the ground potential energy surface (S0), apparently without a barrier. The rotational state distributions of the NCO(X 2Π3/2,0010) fragment are well described by phase space theory (PST), provided that dynamical constraints are included. These constraints are associated with long range (4–7 Å) centrifugal barriers, which are significant even near threshold because of the small reduced mass of H+NCO, and result in a fraction of energy deposited in fragment rotation much smaller than predicted by unconstrained PST. The influence of orientation averaging on the attractive, long-range part of the potential is discussed, and it is argued that angular averaging with respect to the center of mass of the rotating polyatomic fragment results in a shift in the effective potential origin, accompanied by an attenuation of the magnitude of the potential compared to its value for fixed H–N distance. Following initial S1(1A″)←S0(1A′) excitation and internal conversion to S0, HNCO(S0) decays both via unimolecular decomposition of H+NCO and intersystem crossing to the dissociative first triplet state, T1 [yielding NH(X 3Σ−)+CO products]. The competition between the two processes is interrogated by monitoring changes in the relative yields of NCO and NH(X 3Σ−) as a function of excitation energy. It is concluded that near D0(H+NCO), the S0→T1 intersystem crossing rate is several-fold faster than the H+NCO unimolecular decomposition rate. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 7013-7022 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Photodissociation of jet-cooled isocyanic acid has been examined by photofragment ion imaging of H(D) from H(D)NCO and CO from HNCO, and by laser induced fluorescence (LIF) of NH(a 1Δ) from HNCO. Only modest recoil anisotropy is observed in the H+NCO channel at 243.1 nm (β=−0.13±0.05), while the D+NCO channel at approximately the same wavelength reveals no anisotropy (β=0.00±0.05), confirming that the dissociation of H(D)NCO from the opening of the H(D) channel proceeds via vibrational predissociation on the S0(1A) surface. In contrast, substantial anisotropy (β=−0.66±0.08) is observed in the NH(a 1Δ)+CO channel at 230.1 nm, but this value can correspond to dissociation on either S0 or S1. The photolysis region between 243 and 230 nm thus appears important in providing clues to the dissociation mechanism and the competition between different potential energy surfaces. At 217.6 nm, product state distributions exhibit clear dynamical biases. CO is produced in both ν=0 and ν=1, while NH(a 1Δ) distributions correlated with different rovibrational levels of CO, although different in shape, are always cold, consistent with the global NH distribution measured by LIF. The NH distributions indicate dissociation on S1(1A′′), and can be described by Franck–Condon mapping of transition state wave functions in the HNC bending coordinate without additional torque, implying little anisotropy in the potential along that coordinate. On the other hand, a larger torque is manifest in the CO rotational distribution. Although at 217.6 nm the dissociation is likely to be dominated by decomposition on S1, competition with radiationless decay is still manifest. From analysis of the CO photofragment velocity distribution at 230.1 nm, the NH(a 1Δ)+CO dissociation threshold is determined at 42 765±25 cm−1. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...