Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 363-374 
    ISSN: 0730-2312
    Keywords: nuclear matrix proteins ; preparation method ; two-dimensional polyacrylamide gel electrophoresis ; heterogeneous nuclear ribonucleoproteins ; vanadyl ribonucleoside complexes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Comparative analysis of nuclear matrix proteins by two-dimensional electrophoresis may be greatly impaired by copurifying cytoskeletal proteins. The present data show that the bulk of adhering cytofilaments may mechanically be removed by shearing of nuclei pretreated with vanadyl ribonucleoside complexes. Potential mechanisms of action not based on ribonuclease inhibition are discussed. To individually preserve the integrity of nuclear structures, we developed protocols for the preparation of nuclear matrices from three categories of cells, namely leukocytes, cultured cells, and tissue cells. As exemplified with material from human lymphocytes, cultured amniotic cells, and liver tissue cells, the resulting patterns of nuclear matrix proteins appeared quite similar. Approximately 300 spots were shared among the cell types. Forty-nine of these were identified, 21 comprising heterogeneous nuclear ribonucleoproteins. Heterogeneous nuclear ribonucleoproteins L and nuclear lamin B2 isoforms were identified by amino acid sequencing and mass spectrometry. However, individually expressed proteins, such as the proliferating cell nuclear antigen, also pertained following application of the protocols. Thus, enhanced resolution and comparability of proteins improve systematic analyses of nuclear matrix proteins from various cellular sources. J. Cell. Biochem. 71:363-374, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electrophoresis 18 (1997), S. 2109-2115 
    ISSN: 0173-0835
    Keywords: Nuclear matrix ; Common nuclear matrix proteins ; Two-dimensional polyacrylamide gel electrophoresis ; Rat tissues ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Nuclear matrix proteins have been defined as insoluble residual proteins resulting from treatment of isolated nuclei with nucleases, detergents and high ionic strength buffers. They are considered as in part representing the proteins constituting the three-dimensional framework of the interphase nucleus. Though cell-specific nuclear matrix proteins have been differentiated from ubiquitously occurring (common) nuclear matrix proteins, the number and types of common nuclear matrix proteins have not yet been unequivocally established. In the present study nuclear matrix proteins were prepared from isolated nuclei of rat kidney, liver, lung, spleen and testes. The matrix proteins were separated by two-dimensional (2-D) electrophoresis and silver stained. Then the spot patterns were compared by computer-assisted image analysis. Composite images were derived for nuclear matrix proteins of individual tissues. Finding between 396-483 spots per tissue, a total of 964 individual spots were registered. Of these, 102 were common nuclear matrix proteins, as appearing in each of the tissue-characteristic images. The apparent molecular mass and pI data may serve for further identification of these nuclear proteins.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0173-0835
    Keywords: Monoclonal antibody ; Nucleolin ; Nuclear matrix ; Two-dimensional polyacrylamide gel electrophoresis ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: A monoclonal antibody was raised against a salt-extractable fraction of nuclear matrix / intermediate filament scaffolds of polarized MDCK cells. The antibody recognized an ∼ 100 kDa protein in total cell lysates and nuclear matrices of various human cells and tissues and stained nucleolar structures in immunofluorescence microscopy. By partial sequencing of five peptides derived from immunoprecipitated protein, the targeted antigen was found to be homologous to human nucleolin. After two-dimensional electrophoresis of total HeLa cell lysates, immunoreactive bands were detected at isoelectric point (pI) 5.5-6.1, characteristic for nucleolin, and at pI 8.5-9. Whereas the protein focusing at acidic pI was found in Triton X-100-soluble cellular fractions, the antigen focusing at basic pI was exclusively contained in the residual nuclear fraction and was solubilized upon treatment of nuclear matrices with RNAse. The component solubilized by RNAse treatment was still detected at basic pI in two-dimensional electrophoresis. However, upon immunoprecipitation of the antigen from the RNAse-released fraction in the presence of sodium dodecyl sulfate (SDS), the nuclear matrix-derived antigen was positioned at pI 5-6. The present data indicate that the nuclear matrix-bound nucleolin is associated with ribonucleoproteins and a basic component resisting dissociation under conditions of isoelectric focusing.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...