Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 171 (1998), S. 1-5 
    ISSN: 1432-072X
    Keywords: Key wordsl-Serine ; l-threonine ; Anaerobiosis ; Pyridoxal 5′-phosphate enzymes ; Iron-sulfur enzymes ; Glycyl radical enzymes ; Metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The mechanisms controlling the biosynthesis and degradation of l-serine and l-threonine are remarkably complex. Their metabolism forms a network of pathways linking several amino acids, central primary metabolites such as pyruvate, oxaloacetate and 3-phosphoglycerate, and C1 metabolism. Studies on the degradation of these amino acids in Escherichia coli have revealed the involvement of fascinating enzymes that utilise quite diverse catalytic mechanisms. Moreover, it is emerging that both environmental and metabolic signals have a major impact in controlling enzyme synthesis. This is exemplified by the anaerobically regulated tdc operon, which encodes a metabolic pathway for the degradation of serine and threonine. Studies on this pathway are beginning to provide insights into how an organism adapts its genetic makeup to meet the physiological demands of the cell.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 155 (1991), S. 221-228 
    ISSN: 1432-072X
    Keywords: Selenopolypeptide ; Selenated tRNAs ; Enterobacteriaceae ; UGA decoding ; Functional compatibility
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several species of Enterobacteriaceae were investigated for their ability to synthesise selenium-containing macromolecules. Selenated tRNA species as well as selenated polypeptides were formed by all organisms tested. Two selenopolypeptides could be identified in most of the organisms which correspond to the 80 kDa and 110 kDa subunits of the anaerobicaly induced formate dehydrogenase isoenzymes of E coli. In those organisms possessing both isoenzymes, their synthesis was induced in a mutually exclusive manner dependent upon whether nitrate was present during anaerobic growth. The similarity of the 80 kDa selenopolypeptide among the different species was assessed by immunollogical and genetic analyses. Antibodies raised against the 80 kDa selenopolypeptide from E. coli cross-reacted with an 80 kDa polypeptide in those organisms which exhibited fermentative formate dehydrogenase activity. These organisms also contained genes which hydridised with the fdhF gene from E. coli. In an attempt to identify the signals responsible for incorporation of selenium into the selenopolypeptides in these organisms we cloned a portion of the fdhF gene homologue from Enterobacter aerogenes. The nucleotide sequence of the cloned 723 bp fragment was determined and it was shown to contain an in-frame TGA (stop) codon at the position corresponding to that present in the E. coli gene. This fragment was able to direct incorporation of selenocysteine when expressed in the heterologous host, E. coli. Moreover, the E. coli fdhF gene was expressed in Salmonella typhimurium, Serratia marcescens and Proteus mirabilis, indicating a high degree of convervation of the selenating system throughout the enterobacteria.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 75 (1990), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Anaerobically growing Escherichia coli cells contain the enzyme pyruvate formate-lyase which catalyses the non-oxidative cleavage of pyruvate to acetyl-CaA and formate. The enzyme is subject to interconversion between inactive and active forms. The active form contains an oxygen-sensitive organic free radical located on the polypeptide chain which is essential for catalysis. It affords a novel homolytic C-C bond cleavage of the pyruvate substrate. The radical is generated by an iron-dependent converter enzyme which requires reduced flavodoxin and adenosyl methionine as co-substrates and pyruvate as a positive allosteric effector. A second converter enzyme, also iron-dependent, accomplishes the removal of the radical. This post-translational interconversion cycle controls the activity state of pyruvate formate-lyase in the anaerotic cell. Anaerobic conditions also regulate pyruvate formate-lyase at the level of gene expression. Multiple promoters are responsible for effecting a twelve to fifteen fold induction and they are coordinately controlled in response to the oxygen and metabolic status of the cell by sequences which are located far upstream of the pfl coding region. The transcription factor Fnr has been identified as being responsible for part of the anaerobic control of pfl expression, probably through direct interaction with the upstream sequences. In contrast, the expression of the gene encoding the first iron-dependent converter enzyme is unaffected by anaerobiosis and is independent of the Fnr protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Copenhagen : International Union of Crystallography (IUCr)
    Acta crystallographica 57 (2001), S. 1110-1118 
    ISSN: 1399-0047
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Copper-containing nitrite reductases possess a trimeric structure where the catalytic Cu site, located at the monomer–monomer interface, resembles the catalytic sites of a number of Zn enzymes. Nitrite reductase from Alcaligenes xylosoxidans has optimum activity at pH 5.2 which decreases to a negligible level at pH 8. The structure of this nitrite reductase has previously been determined at pH 4.6. It has now been crystallized under new conditions at pH 8.5. Its crystallographic structure provides a structural explanation for the greatly reduced activity of the enzyme at high pH. Characterization of overexpressed protein in solution by EXAFS suggested that the protein lacked Cu in the catalytic type 2 Cu site and that the site was most probably occupied by Zn. Using the anomalous signals from Cu and Zn, the crystal structure revealed that the expressed protein was devoid of Cu in the catalytic site and that only a trace amount (〈10%) of Zn was present at this site in the crystal. Despite the close structural similarity of the catalytic site to a number of Zn enzymes, these data suggest that Zn, if it binds at the catalytic copper site, binds weakly in nitrite reductase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Hypophosphite was used as a toxic analogue to identify genes whose products have a putative function in the transport of formate. Two Tn10-derived insertion mutants were identified that exhibited increased resistance to high concentrations of hypophosphite in the culture medium. The transposon was located in the identical position in the focA (formate channel; previously termed orf) gene of the pfl operon in both mutants. A defined chromosomal focA nonsense mutant, which showed minimal polarity effects on pfl gene expression, had the same phenotype as the insertion mutants. Results obtained using a hycA-lacZ fusion to monitor changes in the intracellular formate concentration in a focA mutant indicated that the level of formate inside the cell was elevated compared with the wild type. Moreover, it could be shown that there was a corresponding reduction of approximately 50% in the amount of formate excreted by a focA mutant into the culture medium. Taken together, these results indicate that formate accumulates in anaerobic ceils which do not have a functional focA gene product and that one function of FocA may be to export formate from the cell. A further significant result was that hypophosphite could substitute for formate in activating hycA gene expression. This hypophosphite-dependent activation of hycA gene expression was reduced 10-fold in a focA null mutant, suggesting that hypophosphite must first enter the cell before it can act as a signal to activate hycA expression. By analogy, these data suggest that FocA may also be functional in the import of formate into anaerobic Escherichia coli cells.Site-specific mutagenesis identified the translation initiation codon of focA as a GUG. Therefore, the FocA polypeptide has a molecular weight of 30958. FocA shows significant similarity at both the primary and secondary structural levels with the NirC protein of E. coli and the FdhC protein of Methanobacterium formicicum. All three proteins are predicted to be integral membrane proteins. A detailed in vivo TnphoA mutagenesis study predicted that FocA has six membrane-spanning segments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: When complexed with Escherichia coli RNA polymerase core enzyme, purified RpoI protein of Rhizobium leguminosarum initiated transcription in vitro from promoters of the vbsADL and vbsGSO operons, which are needed to synthesise the siderophore vicibactin. There is a single transcription initiation site for rpoI, regardless of whether the cells are grown in Fe-replete or Fe-depleted media, but levels of rpoI mRNA were reduced, though not abolished, in the presence of Fe. Unlike PvdS, a similar Pseudomonasσ factor needed to transcribe genes involved in pyoverdine synthesis, RpoI transcribes vbsADL and vbsGSO in the absence of the cognate siderophore. The RpoI σ factor is not required for transcription of rpoI.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: An immunological analysis of an Escherichia coli strain unable to synthesize the main pyruvate formate-lyase enzyme Pfl revealed the existence of a weak, cross-reacting 85 kDa polypeptide that exhibited the characteristic oxygen-dependent fragmentation typical of a glycyl radical enzyme. Polypeptide fragmentation of this cross-reacting species was shown to be dependent on Pfl activase. Cloning and sequence analysis of the gene encoding this protein revealed that it coded for a new enzyme, termed TdcE, which has 82% identity with Pfl. On the basis of RNA analyses, the tdcE gene was shown to be part of a large operon that included the tdcABC genes, encoding an anaerobic threonine dehydratase, tdcD, coding for a propionate kinase, tdcF, the function of which is unknown, and the tdcG gene, which encodes a L-serine dehydratase. Expression of the tdcABCDEFG operon was strongly catabolite repressed. Enzyme studies showed that TdcE has both pyruvate formate-lyase and 2-ketobutyrate formate-lyase activity, whereas the TdcD protein is a new propionate/acetate kinase. By monitoring culture supernatants from various mutants using 1H nuclear magnetic resonance (NMR), we followed the anaerobic conversion of L-threonine to propionate. These studies confirmed that 2-ketobutyrate, the product of threonine deamination, is converted in vivo by TdcE to propionyl-CoA. These studies also revealed that Pfl and an as yet unidentified thiamine pyrophosphate-dependent enzyme(s) can perform this reaction. Double null mutants deficient in phosphotransacetylase (Pta) and acetate kinase (AckA) or AckA and TdcD were unable to metabolize threonine to propionate, indicating that propionyl-CoA and propionyl-phosphate are intermediates in the pathway and that ATP is generated during the conversion of propionyl-P to propionate by AckA or TdcD.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 23 (1997), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Anaerobic expression of the focA pfl operon is dependent on the transcription factors ArcA and FNR and transcription is directed by multiple, anaerobically regulated promoters. A FNR-binding site is centred at −41.5 bp relative to the P6 promoter, inactivation of which severely impairs anaerobic expression of the complete operon. Mutations were introduced into this binding site to create a consensus recognition site for the cAMP-receptor protein, CRP (CC-site), and one that was recognised by both CRP and FNR (CF-site). Transcription directed by these mutant binding sites in vivo in different promoter constructs was analysed by primer extension and by constructing lacZ operon fusions. With a derivative including only the P6 promoter and the CF-binding site, transcription was shown to be independent of oxygen and was activated by CRP or FNR. In agreement with previous findings, FNR only activated transcription anaerobically. In a construct including the CC-binding site transcription was strong, CRP dependent and initiated at the identical site to the wild-type promoter. Transcription activation from the CC-site was exquisitely sensitive to low cAMP concentration. Surprisingly, in a crp mutant, anaerobically inducible, FNR-dependent transcription directed by the CC-site was detected, indicating that FNR can recognise a consensus CRP-binding site in vivo. A strain unable to synthesise CRP or FNR exhibited no transcription from the P6 promoter. Essentially the same results were observed in a series of constructs that also included the promoter P7 and its regulatory sequences. Evidence is also presented which demonstrates that CRP activates transcription from the natural FNR-binding site of the P6 promoter. In vitro DNA-binding studies showed that CRP specifically interacted with the FNR-binding site, protecting exactly the same sequence as that protected by the FNR protein. Interaction of CRP with the natural FNR-binding site was reduced greater than 50-fold compared to its interaction with the mutant CC-binding site. Although we could not demonstrate that FNR interacted with the CC-binding site in vitro, it did bind to the CF-site giving the same protection as observed with the wild-type FNR-binding site. FNR also activated transcription from the CF-site in vitro, giving further support to the idea that a single functional DNA half-site is sufficient to direct binding and transcription activation by a dimeric transcription factor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Molecular microbiology 39 (2001), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The tdc operon is subject to CRP-controlled catabolite repression. Expression of the operon is also induced anaerobically, although this regulation does not rely on direct control by either FNR or ArcA. Recently, the anaerobic expression of the tdc operon was found to be fortuitously induced in the presence of glucose by a heterologous gene isolated from the Gram-positive anaerobe Clostridium butyricum. The gene, termed tcbC, encoded a histone-like protein of 14.5 kDa. Using tdc–lacZ fusions, it was shown that TcbC did not activate tdc expression by functionally replacing any of the operon regulators. In vitro transcription analyses with RNA polymerase and CRP revealed that faithful CRP-dependent transcription initiation occurred only on supercoiled templates. No specific, CRP-dependent transcription initiation was observed on relaxed or linear DNA templates. Surprisingly, purified His-tagged TcbC activated transcription from a relaxed, circular template, but not from supercoiled or linear templates. Examination of the CRP binding site of the tdc promoter revealed that it was located 43.5 bp upstream of the transcription initiation site. Repositioning of the CRP site at −41.5 bp abolished activation by the TcbC protein and allowed CRP-dependent transcription to occur on linear, relaxed and supercoiled templates. TcbC bound DNA non-specifically; however, in topoisomerase I relaxation assays, it was demonstrated that TcbC imposed torsional constraints on negatively supercoiled DNA, which influenced the ability of the enzyme to relax the topoisomers. Taken together, these results strongly suggest that TcbC activates transcription of tdc by altering the local topological status of the tdc promoter and that, in the wild-type tdc promoter, the CRP binding site is misaligned to allow transcription to occur only under optimal conditions. Indeed, in vivo transcription analyses revealed that repositioning of the CRP binding site to −41.5 bp resulted in high-level, CRP-dependent transcription, even under catabolite-repressing conditions, and that transcription was no longer influenced by TcbC. Remarkably, however, anaerobic regulation of the mutant promoter was retained. This indicates that the other tdc regulators, TdcA and TdcR, govern anaerobic transcription activation by CRP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: CydR is an Fnr-like protein in the obligatory aerobic nitrogen-fixing bacterium Azotobacter vinelandii. The cydR mutant overproduces the cytochrome bd terminal oxidase. Using two-dimensional polyacrylamide gel electrophoresis, we showed that β-ketothiolase and acetoacetyl-CoA reductase were also overexpressed in the cydR mutant. Fumarase C and a coenzyme A transferase, possibly succinyl-SCoA transferase, were decreased in this mutant. Enzyme assays confirmed the elevated β-ketothiolase and acetoacetyl-CoA reductase activities in this mutant. The cydR mutant accumulated poly-β-hydroxybutyrate throughout the exponential growth phase, unlike the wild-type strain that only accumulated poly-β-hydroxybutyrate during stationary phase. The results demonstrate that CydR controls poly-β-hydroxybutyrate synthesis in A. vinelandii.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...