Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 38 (1995), S. 914-918 
    ISSN: 1432-0428
    Keywords: Key words Diabetic neuropathy ; nerve blood flow ; vasodilator ; sciatic nerve ; cilostazol.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Two proposed mechanisms of diabetic neuropathy are microvascular ischaemia and a reduction in Na,K-ATPase activity. We evaluated the effect of cilostazol, a drug that is both a potent phosphodiesterase inhibitor that normalizes nerve Na,K-AT-Pase and a vasodilator, on nerve blood flow (NBF) to determine whether it would improve experimental diabetic neuropathy. We examined whether epineurally applied cilostazol acted as a vasodilator on the peripheral nerve of normal and diabetic rats, and whether feeding the rats a cilostazol-supplemented diet could improve diabetic neuropathy. Cilostazol increased nerve blood flow (NBF) in a dose-dependent fashion with an EC50 of 10–5.74 mol/l. Cilostazol also normalized NBF in experimental diabetic neuropathy with a 10–4 mol/l local application on the sciatic nerve. In diabetic neuropathy, a cilostazol-supplemented diet improved both NBF and nerve conduction in a dose- and time-dependent fashion. Potential mechanisms of action of cilostazol on the nerve include its effect on NBF, Na, K-ATPase, and restoration of the thromboxane:prostacyclin ratio. Cilostazol may have potential in the treatment of diabetic neuropathy. [Diabetologia (1995) 38: 914–918]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 38 (1995), S. 914-918 
    ISSN: 1432-0428
    Keywords: Diabetic neuropathy ; nerve blood flow ; vasodilator ; sciatic nerve ; cilostazol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Two proposed mechanisms of diabetic neuropathy are microvascular ischaemia and a reduction in Na,K-ATPase activity. We evaluated the effect of cilostazol, a drug that is both a potent phosphodiesterase inhibitor that normalizes nerve Na,K-AT-Pase and a vasodilator, on nerve blood flow (NBF) to determine whether it would improve experimental diabetic neuropathy. We examined whether epineurally applied cilostazol acted as a vasodilator on the peripheral nerve of normal and diabetic rats, and whether feeding the rats a cilostazol-supplemented diet could improve diabetic neuropathy. Cilostazol increased nerve blood flow (NBF) in a dose-dependent fashion with an EC50 of 10−5.74 mol/l. Cilostazol also normalized NBF in experimental diabetic neuropathy with a 10−4 mol/l local application on the sciatic nerve. In diabetic neuropathy, a cilostazol-supplemented diet improved both NBF and nerve conduction in a dose- and time-dependent fashion. Potential mechanisms of action of cilostazol on the nerve include its effect on NBF, Na, K-ATPase, and restoration of the thromboxane:prostacyclin ratio. Cilostazol may have potential in the treatment of diabetic neuropathy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 85 (2003), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We evaluated the effects of chronic hyperglycemia on L5 DRG neurons. Experimental diabetic neuropathy (EDN) was induced by streptozotocin. We studied peripheral nerve after 1, 3, 12 months of diabetes. A conduction deficit was present from the first month and persisted over 12 months, affecting mainly sensory fibers. 8-Hydroxy-deoxyguanosine labeling was significantly increased at all time points in DRG neurons, indicating oxidative injury. Caspase-3 labeling was increased at all three time-points, indicating commitment to the efferent limb of the apoptotic pathway. Apoptosis was confirmed by a significant increase in the percent of neurons undergoing apoptosis (TUNEL staining) at 1 month (8%), 3 months (7%) and 12 months (11%). Morphometry of DRG showed a selective loss (42%) of the largest neurons. These findings support the concept that oxidative stress leads to oxidative injury of DRG neurons, with mitochondrium as a specific target, leading to apoptosis and a predominantly sensory neuropathy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...