Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Perspectives in drug discovery and design 20 (2000), S. 171-190 
    ISSN: 1573-9023
    Keywords: bound water ; dihydrofolate reductase ; DNA repairenzymes ; docking ; drug design ; flexibility ; molecularrecognition ; progesterone receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract We present our database-screening tool SLIDE, which is capable of screening large data sets of organic compounds for potential ligands to a given binding site of a target protein. Its main feature is the modeling of induced complementarity by making adjustments in the protein side chains and ligand upon binding. Mean-field theory is used to balance the conformational changes in both molecules in order to generate a shape-complementary interface. Solvation is considered by prediction of water molecules likely to be conserved from the crystal structure of the ligand-free protein, and allowing them to mediate ligand interactions, if possible, or including a desolvation penalty when they are displaced by ligand atoms that do not replace the lost hydrogen bonds.A data set of over 175 000 organic molecules was screened for potential ligands to the progesterone receptor, dihydrofolate reductase, and a DNA-repair enzyme. In all cases the screening time was less than a day on a Pentium II processor, and known ligands as well as highly complementary new potential ligands were found.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0887-3585
    Keywords: docking ; distance geometry ; drug design ; peptidyl inhibitors ; protein-peptide interactions ; inducible complementarity ; aspartic proteinase ; glycosyltransferase ; serine protease ; DNA repair enzyme ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The three key challenges addressed in our development of SPECITOPE, a tool for screening large structural databases for potential ligands to a protein, are to eliminate infeasible candidates early in the search, incorporate ligand and protein side-chain flexibility upon docking, and provide an appropriate rank for potential new ligands. The protein ligand-binding site is modeled by a shell of surface atoms and by hydrogen-bonding template points for the ligand to match, conferring specificity to the interaction. SPECITOPE combinatorially matches all hydrogen-bond donors and acceptors of the screened molecules to the template points. By eliminating molecules that cannot match distance or hydrogen-bond constraints, the transformation of potential docking candidates into the ligand-binding site and the shape and hydrophobic complementarity evaluations are only required for a small subset of the database. SPECITOPE screens 140,000 peptide fragments in about an hour and has identified and docked known inhibitors and potential new ligands to the free structures of four distinct targets: a serine protease, a DNA repair enzyme, an aspartic proteinase, and a glycosyltransferase. For all four, protein side-chain rotations were critical for successful docking, emphasizing the importance of inducible complementarity for accurately modeling ligand interactions. SPECITOPE has a range of potential applications for understanding and engineering protein recognition, from inhibitor and linker design to protein docking and macromolecular assembly. Proteins 33:74-87, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...