Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Key words Glycogen kinetics, gluconeogenesis, glycogenolysis, glucose metabolism in vivo, 13C glucose.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A novel approach to the study of hepatic glycogen kinetics and fractional gluconeogenesis in vivo is described. Ten healthy female subjects were fed an isocaloric diet containing 55 % carbohydrate energy with a 13C abundance of 1.083 atom percent for a 3-day baseline period; then, a diet of similar composition, but providing carbohydrate with a 13C abundance of 1.093 atom percent was started and continued for 5 days. Resting respiratory gas exchanges, urinary nitrogen excretion, breath 13CO2 and plasma 13C glucose were measured every morning in the fasting state. The enrichment in 13C of hepatic glycogen was calculated from these measured data. 13C glycogen enrichment increased after switching to a 13C enriched carbohydrate diet, and was identical to the 13C enrichment of dietary carbohydrates after 3 days. The time required to renew 50 % of hepatic glycogen, as determined from the kinetics of 13C glycogen enrichment, was 18.9±3.6 h. Fractional gluconeogenesis, as determined from the difference between the enrichments of glucose oxidized originating from hepatic glycogen and plasma glucose 13C was 50.8±5.3 %. This non-invasive method will allow the study of hepatic glycogen metabolism in insulin-resistant patients. [Diabetologia (1994) 37: 517–523]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Keywords Glycogenolysis ; carbohydrate oxidation ; glucagon ; gluconeogenesis ; fructose.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Increased endogenous glucose production (EGP) and gluconeogenesis contribute to the pathogenesis of hyperglycaemia in non-insulin-dependent diabetes mellitus (NIDDM). In healthy subjects, however, EGP remains constant during administration of gluconeogenic precursors. This study was performed in order to determine whether administration of fructose increases EGP in obese NIDDM patients and obese non-diabetic subjects. Eight young healthy lean subjects, eight middle-aged obese NIDDM patients and seven middle-aged obese non-diabetic subjects were studied during hourly ingestion of 13C fructose (0.3 g · kg fat free mass−1· h−1) for 3 h. Fructose failed to increase EGP (measured with 6,6 2H glucose) in NIDDM (17.7 ± 1.9 μmol · kg fat free mass−1· min−1 basal vs 15.9 ± 0.9 after fructose), in obese non-diabetic subjects (12.1 ± 0.5 basal vs 13.1 ± 0.5 after fructose) and in lean healthy subjects (13.3 ± 0.5 basal vs 13.8 ± 0.6 after fructose) although 13C glucose synthesis contributed 73.2 % of EGP in lean subjects, 62.6 % in obese non-diabetic subjects, and 52.8 % in obese NIDDM patients. Since glucagon may play an important role in the development of hyperglycaemia in NIDDM, healthy subjects were also studied during 13C fructose ingestion + hyperglucagonaemia (232 ± 9 ng/l) and during hyperglucagonaemia alone. EGP increased by 19.8 % with ingestion of fructose + glucagon (p 〈 0.05) but remained unchanged during administration of fructose or glucagon alone. The plasma 13C glucose enrichment was identical after fructose ingestion both with and without glucagon, indicating that the contribution of fructose gluconeogenesis to the glucose 6-phosphate pool was identical in these two conditions. We concluded that during fructose administration: 1) gluconeogenesis is increased, but EGP remains constant in NIDDM, obese non-diabetic, and lean individuals; 2) in lean individuals, both an increased glucagonaemia and an enhanced supply of gluconeogenic precursors are required to increase EGP; this increase in EGP occurs without changes in the relative proportion of glucose 6-phosphate production from fructose and from other sources (i. e. glycogenolysis + gluconeogenesis from non-fructose precursors). [Diabetologia (1996) 39: 580–586]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0428
    Keywords: Glycogenolysis ; carbohydrate oxidation ; glucagon ; gluconeogenesis ; fructose
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Increased endogenous glucose production (EGP) and gluconeogenesis contribute to the pathogenesis of hyperglycaemia in non-insulin-dependent diabetes mellitus (NIDDM). In healthy subjects, however, EGP remains constant during administration of gluconeogenic precursors. This study was performed in order to determine whether administration of fructose increases EGP in obese NIDDM patients and obese non-diabetic subjects. Eight young healthy lean subjects, eight middle-aged obese NIDDM patients and seven middle-aged obese non-diabetic subjects were studied during hourly ingestion of 13C fructose (0.3 g · kg fat free mass−1 · h−1) for 3 h. Fructose failed to increase EGP (measured with 6,6 2H glucose) in NIDDM (17.7±1.9 Μmol · kg fat free mass−1 · min−1 basal vs 15.9±0.9 after fructose), in obese non-diabetic subjects (12.1±0.5 basal vs 13.1±0.5 after fructose) and in lean healthy subjects (13.3±0.5 basal vs 13.8±0.6 after fructose) although 13C glucose synthesis contributed 73.2% of EGP in lean subjects, 62.6% in obese non-diabetic subjects, and 52.8% in obese NIDDM patients. Since glucagon may play an important role in the development of hyperglycaemia in NIDDM, healthy subjects were also studied during 13C fructose ingestion + hyperglucagonaemia (232±9 ng/l) and during hyperglucagonaemia alone. EGP increased by 19.8% with ingestion of fructose + glucagon (p〈0.05) but remained unchanged during administration of fructose or glucagon alone. The plasma 13C glucose enrichment was identical after fructose ingestion both with and without glucagon, indicating that the contribution of fructose gluconeogenesis to the glucose 6-phosphate pool was identical in these two conditions. We concluded that during fructose administration: 1) gluconeogenesis is increased, but EGP remains constant in NIDDM, obese non-diabetic, and lean individuals; 2) in lean individuals, both an increased glucagonaemia and an enhanced supply of gluconeogenic precursors are required to increase EGP; this increase in EGP occurs without changes in the relative proportion of glucose 6-phosphate production from fructose and from other sources (i. e. glycogenolysis + gluconeogenesis from non-fructose precursors).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...