Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 98 (1996), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The involvement of pyridine nucleotides in the reduction of extracytoplasmatic electron acceptors by iron-deficient Plantago lanceolata L. roots has been examined by measuring the changes in NAD(P)H and NAD(P)− induced by various external acceptors. Exposure of the plants to FeEDTA, ferricyanide, ferric citrate or hexachloroiri-date resulted in a transient decrease in NADPH and an increase in NAD−. No major differences in this pattern were observed between acceptors which were assumed to be reduced by different enzymes. The application of the membrane-permeable oxidant nitro blue tetrazolium led to similar changes in reduced and oxidized pyridine nucleotides and decreased the reduction of external acceptors. The amino acid analog p-fluorophenylalanine caused a transient decline in both NADPH level and NADPH/ NADP− ratio and a decrease in the ratio of NADH to NAD− without affecting the level of NADH. Exposure of the plants to the translation inhibitor cycloheximide increased both NADH and NADPH concentrations. A comparison of the redox activities and pyridine nucleotide fractions after inhibitor treatment revealed that the constitutive, but not iron stress-induced redox activity correlates with NADPH levels. These results are interpreted as confirming that the redox systems on the root plasma membrane are separately regulated. Possible metabolic reactions during the reduction processes are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...