Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 36 (1988), S. 896-902 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Removal of the peripheral subunits PSI-C, -D and -E from the photosystem I (PSI) complex of barley requires a urea treatment much harsher than required to remove the similar subunits from cyanobacterial PSI. The resulting PSI barley core was reconstituted by addition of the E. coli expressed subunits PSI-C and -D, and PSI-E isolated from barley. Western blotting, flash photolysis and NADP+ photoreduction measurements demonstrated complete and specific removal of the three subunits from the core and efficient reconstitution of the complex after addition of PSI-C, -D and -E. Flash photolysis reveals that PSI-D is essential for binding of functional PSI-C to the PSI core. An N-terminally truncated barley PSI-D lacking 24 amino acid residues and thus being without the N-terminal extension characteristic for higher plant PSI-D proteins reconstitutes the PSI core to 50% of the level obtained with intact PSI-D as demonstrated by flash photolysis and NADP+ photoreduction measurements. Cyanobacterial PSI-D is functionally equivalent to truncated barley PSI-D with respect to its activity to reconstitute the PSI core. This shows that the N-terminal extension of plant PSI-D plays a key role in binding PSI-C to the core. The plant-specific N-terminus of PSI-D is hypothesized to execute its function through interaction with a plant-specific PSI subunit, possibly PSI-H. An anchoring function of the N-terminus of PSI-D would also explain the harsh treatment needed to obtain a plant PSI core. PSI-E is important for efficient NADP+ reduction but does not influence electron transfer to iron-sulphur centres A/B nor binding of PSI-C. The enhancing effect of PSI-E on NADP+ reduction is independent of the presence of the N-terminus of PSI-D.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: bipartite presequence ; Hordeum vulgare ; light induction ; photosystem I subunit PSI-F ; protein import ; PsaF
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A full-length cDNA clone encoding the PSI-F subunit of barley photosystem I has been isolated and sequenced. The open reading frame encodes a precursor polypeptide with a deduced molecular mass of 24837 Da. The barley PSI-F precursor contains a bipartite presequence with characteristics similar to the presequences of proteins destined to the thylakoid lumen. In vitro import studies demonstrate that an in vitro synthesized precursor is transported across the chloroplast envelope and directed to the thylakoid membrane, where it accumulates in a protease-resistant form. Incubation of the precursor with a chloroplast stromal extract results in processing to a form intermediate in size between the precursor and mature forms. Hydrophobicity analysis of the barley PSI-F protein reveals a hydrophobic region predicted to be a membrane spanning α-helix. The hydrophobic nature of PSI-F combined with a bipartite presequence is unusual. We postulate that the second domain in the bipartite presequence of the PSI-F precursor proteins is required to ensure the proper orientation of PSI-F in the thylakoid membrane. The expression of the PsaF gene is light-induced similar to other barley photosystem I genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...