Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 79 (1998), S. 49-57 
    ISSN: 1439-6327
    Keywords: Key words Hypertrophy ; Muscle ; Specificity ; Strength ; Training
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The purpose of this study was to compare pure eccentric and concentric isokinetic training with respect to their possible specificity in the adaptation of strength and morphology of the knee extensor muscles. Ten moderately trained male physical education students were divided into groups undertaking eccentric (ETG) and concentric (CTG) training. They performed 10 weeks of maximal isokinetic (90° · s−1) training of the left leg, 4 × 10 repetitions – three times a week, followed by a second 10-week period of similar training of the right-leg. Mean eccentric and concentric peak torques increased by 18% and 2% for ETG and by 10% and 14% for CTG, respectively. The highest increase in peak torque occurred in the eccentric 90° · s−1 test for ETG (35%) whereas in CTG strength gains ranged 8%–15% at velocities equal or lower than the training velocity. Significant increases in strength were observed in the untrained contra-lateral leg only at the velocity and mode used in ipsilateral training. Cross-sectional area of the quadriceps muscle increased 3%–4% with training in both groups, reaching statistical significance only in ETG. No major changes in muscle fibre composition or areas were detected in biopsies from the vastus lateralis muscle for either leg or training group. In conclusion, effects of eccentric training on muscle strength appeared to be more mode and speed specific than corresponding concentric training. Only minor adaptations in gross muscle morphology indicated that other factors, such as changes in neural activation patterns, were causing the specific training-induced gains in muscle strength.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 81 (2000), S. 54-61 
    ISSN: 1439-6327
    Keywords: Key words Eccentric ; Concentric ; Strength ; Growth ; Efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The main purpose of this study was to investigate the changes in anthropometric measures and muscle strength that occur during puberty in children from the age of 11 to 16 years. Special attention was paid to possible gender- and muscle action-type-specific alterations in torque/velocity and EMG/velocity characteristics. Sixteen children participated in the study (9 boys and 7 girls). Eccentric and concentric muscle strength was measured on an isokinetic dynamometer at angular velocities of 45, 90 and 180° · s−1. Simultaneously, a surface electromyogram (EMG) was recorded from the quadriceps muscle. At the age of 11, the boys and girls exhibited equal anthropometric measures and strength performance. In both genders, body measures and muscle strength increased significantly during the 5-year period, with larger increases being recorded for the boys. In addition, the boys increased selectively their eccentric torque per body mass, indicating an action-type-specific change in muscle quality. The general shape of the torque/velocity relationship exhibited an adult-like pattern both before and after puberty, and did not differ between genders. Both pre- and postpuberty, myoelectric activity was generally lower during eccentric than concentric actions, the highest values occurring for both genders in the concentric 180° · s−1 test. Ratios of eccentric to concentric torque per EMG, which reflect electromechanical efficiency, showed no significant changes with age. A significant velocity- and gender-specific change in electromechanical efficiency was observed at the highest speed at postpuberty, where the ratio for the girls was higher than for the boys.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 69 (1994), S. 81-87 
    ISSN: 1439-6327
    Keywords: Children ; Concentric actions ; Eccentric actions ; Torque ; Velocity ; Isokinetic ; Electromyogram ; Efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The purpose of this investigation was to compare children and adults of both genders with respect to torque-velocity, electromyogram (EMG)-velocity and torque-EMG relationships during maximal voluntary knee extensor muscle actions. Four groups of ten subjects each were studied comprising 11-year-old girls and boys and female and male physical education students (22–35 years). Maximal voluntary eccentric (lengthening) and concentric (shortening) actions of the knee extensors were performed at the constant velocities of 45, 90 and 180° · s−1. Average values for torque and EMG activity, recorded by surface electrodes from the quadriceps muscle, were taken for the mid 40° of the 80° range of motion. The overall shapes of the torque- and EMG-velocity relationships were similar for all four groups, showing effects of velocity under concentric (torque decrease and EMG increase) but not under eccentric conditions. Eccentric torques were always greater than velocity-matched concentric ones, whereas the eccentric EMG values were lower than the concentric ones at corresponding velocities. Torque output per unit EMG activity was clearly higher for eccentric than for concentric conditions and the difference was of similar magnitude for all groups. Thus, the torque-EMG-velocity relationships would appear to have been largely independent of gender and to be fully developed at a prepubertal age.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1439-6327
    Keywords: Acceleration ; Eccentric ; Concentric ; Isokinetic ; Method error
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary A new computerized dynamometer (the SPARK System) is described. The system can measure concentric and eccentric muscle strength (torque) during linear or nonlinear acceleration or deceleration, isokinetic movements up to 400° · s−1, and isometric torque. Studies were performed to assess: I. validity and reproducibility of torque measurements; II. control of lever arm position; III. control of different velocity patterns; IV. control of velocity during subject testing; and, V. intra-individual reproducibility. No significant difference was found between torque values computed by the system and known torque values (p〉0.05). No difference was present between programmed and external measurement of the lever arm position. Accelerating, decelerating and isokinetic velocity patterns were highly reproducible, with differences in elapsed time among 10 trials being never greater than 0.001 s. Velocity during concentric and eccentric isokinetic quadriceps contractions at 30° · s−1, 120° · s−1 and 270° · s−1 never varied by more than 3° · s−1 among subjects (N=21). Over three days of testing, the overall error for concentric and eccentric quadriceps contraction peak torque values for 5 angular velocities between 30° · s−1 and 270° · s−1 ranged from 5.8% to 9.0% and 5.8% to 9.6% respectively (N=25). The results indicate that the SPARK System provides valid and reproducible torque measurements and strict control of velocity. In addition, the intra-individual error is in accordance with those reported for other similar devices.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 58 (1988), S. 100-104 
    ISSN: 1439-6327
    Keywords: Man ; Torque-velocity characteristics ; Eccentric ; Concentric ; Quadriceps femoris ; Method error
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The primary purpose of this investigation was to study the eccentric and concentric torque-velocity characteristics of the quadriceps femoris in man using a recently developed combined isometric, concentric and eccentric controlled velocity dynamometer (the SPARK System). A secondary purpose was to compare the method error associated with maximal voluntary concentric and eccentric torque output over a range of testing velocities. 21 males (21–32 years) performed on two separate days maximal voluntary isometric, concentric and eccentric contractions of the quadriceps femoris at 4 isokinetic lever arm velocities of 0° · s−1 (isometric), 30° · s−1 120° · s−1 and 270° · s−1. Eccentric peak torque and angle-specific torques (measured every 10° from 30° to 70°) did not significantly change from 0° · s−1 to 270° · s−1 (p〉0.05) (with the exception of angle-specific 40° torque, which significantly increased;p〈0.05). The mean method error was significantly higher for the eccentric tests (10.6%±1.6%) than for the concentric tests (8.1%±1.7%) (p〈0.05). The mean method error decreased slightly with increasing concentric velocity (p〉0.05), and increased slightly with increasing eccentric velocity (p〉0.05). A tension restricting neural mechanism, if active during maximal eccentric contractions, could possibly account for the large difference seen between the present eccentric torque-velocity results and the classic results obtained from isolated animal muscle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 57 (1988), S. 360-368 
    ISSN: 1439-6327
    Keywords: Humans ; Skeletal muscles ; Anaerobic exercise ; Histocytochemistry ; Ultrastructure ; Muscle cell injury
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The vastus lateralis muscles of eleven male elite sprinters (17–28 years) were investigated in order to examine the impact of high tension anaerobic muscular work on muscle fibre fine structure. In an attempt to reproduce the training regimen six subjects ran 20 repetitions of 25 s on a treadmill with 2 min 35 s in between, at a speed corresponding to 86% of their personal best 200 m time. PAS-stained sections of biopsies taken approximately 2 h after training generally indicated glycogen depletion in type 1 and type 2B fibres. At the light microscopic level, no signs of inflammation or fibre rupture were observed. However, at the ultrastructural level, frequent abnormalities of the contractile material and the cytoplasmic organelles were detected. Z-band streaming, autophagic vacuoles and abnormal mitochondria were the most conspicuous observations. Control specimens from sprinters who did not perform the acute exercise routine also displayed structural deviations, although to a lesser degree. It is hypothesized that during sprint training the leg musculature is put under great mechanical and metabolic stress which causes the degenerative response reported here.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0878
    Keywords: Skeletal muscles ; Ultrastructure ; Exercise ; Glycogen ; Humans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Distribution of glycogen particles in semithin and ultrathin sections of biopsy samples from human muscles subjected to either short- or long-term running were investigated using PAS and Periodic Acid-ThioSemiCarbazide-Silver Proteinate (PA-TSC-SP) staining methods. Glycogen particles were predominantly found immediately under the sarcolemma or aligned along the myofibrillar Iband. After long-term exhaustive exercise type-1 fibers with a few or no glycogen particles in the core of the fibers were frequently observed. The subsarcolemmal glycogen stores of these “depleted” type-1 fibers were about three times as large as after exhaustive short-time exercise. Another indication of utilization of subsarcolemmal glycogen stores during anaerobic exercise was that many particles displayed a pale, rudimentary shape. This observation suggests fragmental metabolization of glycogen. Thus, depending on type of exercise and type of fiber differential and sequential glycogen utilization patterns can be observed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    European journal of applied physiology 71 (1995), S. 180-186 
    ISSN: 1439-6327
    Keywords: Contraction time ; Exertion ; Fatigue ; Relaxation time
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The contractile properties of the quadriceps muscle were measured in seven healthy male subjects before, during and after prolonged cycling to exhaustion. Special efforts were made to obtain measurements immediately after exercise. The exercise intensity corresponded to about 75% of estimated maximal O2 uptake and time to exhaustion was mean 85 (SEM 9) min. At the end of the cycling heart rate and perceived exertion for the legs were 94% and 97% of maximal values, respectively. Maximal voluntary isometric force (MVC) had decreased after 5 min of exercise to a mean 91 (SEM 4)% of the pre-exercise value (P 〈 0.05) and decreased further to a mean 82 (SEM 6) and mean 66 (SEM 5)% after 40-min cycling and at exhaustion, respectively. A new finding was that during recovery reversal of MVC occurred in different phases where the half recovery time of the initial rapid phase was about 2 min. The MVC was a mean 80 (SEM 2)% of the pre-exercise value after 30 min and was not affected by superimposed electrical stimulation. Maximal voluntary concentric and eccentric forces decreased to 74% and 80% o of initial values at exhaustion (P 〈 0.05). The kinetics of isometric contraction expressed as the time between 5% and 50% of tension (rise time) and the time between 95% and 50% of tension (relaxation time) were not significantly affected by the prolonged cycling. The electromechanical delay measured as the time between the first electrical stimulus and 5% of tension decreased from a mean 32 (SEM 1) ms at rest to a mean 26.6 (SEM 0.6) ms at fatigue (P 〈 0.05). It is concluded that prolonged exhausting cycling results in reduced force-generating capacity during isometric, concentric and eccentric conditions. The absence of a slowing of relaxation and the incomplete reversal of MVC after 30 min of recovery indicate that the mechanism(s) of fatigue during prolonged exercise involve other components than those involved during high intensity exercise.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...