Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: We expressed the cloned μ-opioid receptor (μR) in high abundance (5.5 × 106 sites/cell) with an amino-terminal epitope tag (EYMPME) in human embryonic kidney 293 cells. The epitope-tagged receptor (EE-μR) was similar to the untagged μR in ligand binding and agonist-dependent inhibition of cyclic AMP accumulation. By confocal microscopy, the labeled receptor was shown to be largely confined to the plasma membrane. Pretreatment with morphine failed to affect the cellular distribution of the receptor as judged by immunofluorescence and tracer binding studies. In contrast, exposure to the μ-specific peptide agonist [d-Ala2,MePhe4,Glyol5]enkephalin (DAMGO) caused strong labeling of endocytic vesicles, indicating extensive agonist-induced cellular redistribution of EE-μR. Tracer binding studies suggested partial net internalization and a small degree of down-regulation caused by DAMGO. EE-μR-containing membranes were solubilized in detergent [3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate] and immunoprecipitated by an anti-epitope monoclonal antibody. Immunoblotting revealed a prominent band at ∼70 kDa with weaker bands at ∼65 kDa. EE-μR was labeled with [γ-32P]ATP in permeabilized cells, immunoprecipitated, and analyzed by polyacrylamide gel electrophoresis autoradiography. A prominent band at 65–70 kDa indicated the presence of basal receptor phosphorylation occurring in the absence of agonist, which was enhanced ∼1.8-fold with the addition of morphine. In conclusion, intracellular trafficking of the μR appears to depend on the agonist, with morphine and DAMGO having markedly different effects. Unlike other G protein-coupled receptors, basal phosphorylation is substantial, even in the absence of agonist.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 68 (1997), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Internalization and recycling of G protein-coupled receptors (GPCRs), such as the μ-opioid receptor, largely depend on agonist stimulation, whereas certain other receptor types recycle constitutively, e.g., the transferrin receptor. To investigate structural domains involved in μ-opioid receptor internalization, we constructed two truncation mutants bracketing a Ser/Thr-rich domain (354ThrSerSerThrIleGluGlnGlnAsn362) unique to the C-terminus of the μ-opioid receptor (mutants Trunc354 and Trunc363). Ligand binding did not differ substantially, and G protein coupling was slightly lower for these μ-receptor constructs, in particular for Trunc363. To permit localization of the receptor by immunocytochemistry, an epitope tag was added to the N-terminus of the wildtype and mutant receptors. Both the wild-type μ-opioid receptor and Trunc363 resided largely at the plasma membrane and internalized into vesicles upon stimulation with the agonist [d-Ala2,N-Me-Phe4,Gly-ol5]-enkephalin. Internalization occurred into vesicles that contain transferrin receptors, as shown previously, as well as clathrin, but not caveolin. In contrast, even without any agonist present, Trunc354 colocalized in intracellular vesicles with clathrin and transferrin receptors, but not caveolin. On blocking internalization by hyperosmolar sucrose or acid treatment, Trunc354 translocated to the plasma membrane, indicating that the mutant internalized into clathrin-coated vesicles and recycled constitutively. Despite agonist-independent internalization of Trunc354, basal G protein coupling was not elevated, suggesting distinct mechanisms for coupling and internalization. Furthermore, a portion of the C-terminus, particularly the Ser/Thr domain, appears to suppress μ-receptor internalization, which can be overcome by agonist stimulation. These results demonstrate that a mutant GPCR can be constructed such that internalization, normally an agonist-dependent process, can occur spontaneously without concomitant G protein activation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...