Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 11 (1999), S. 579-589 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The linear temporal stability characteristics of converging–diverging, symmetric wavy walled channel flows are numerically investigated in this paper. The basic flow in the problem is a superposition of plane channel flow and periodic flow components arising due to the small amplitude sinusoidal waviness of the channel walls. The disturbance equations are derived within the frame work of Floquet theory and solved using the spectral collocation method. Two-dimensional stability calculations indicate the presence of fast growing unstable modes that arise due to the waviness of the walls. Neutral stability calculations are performed in the disturbance wavenumber–Reynolds number (αs−R) plane, for the wavy channel with wavenumber λ1=0.2 and the wall amplitude to semi-channel height ratio, εw, up to 0.1. It is also shown that the two-dimensional wavy channel flows can be modulated by a suitable frequency of wall excitation ωg, thereby stabilizing the flow.© 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 26 (1998), S. 519-531 
    ISSN: 0271-2091
    Keywords: wavy channel flow ; peristaltic motion ; spectral collocation method ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical procedure is developed for the analysis of flow in a channel whose walls describe a travelling wave motion. Following a perturbation method, the primitive variables are expanded in a series with the wall amplitude as the perturbation parameter. The boundary conditions are applied at the mean surface of the channel and the first-order perturbation quantities are calculated using the pseudospectral collocation method. Although limited by the linear analysis, the present approach is not restricted by the Reynolds number of the flow and the wave number and frequency of the wavy-walled channel. Using the computed wall shear stresses, the positions of flow separation and reattachment are determined. The variations in velocity and pressure with frequency of excitation are also presented. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...