Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The heritability of sodium and potassium transport to the xylem was measured by the regression of Fn+1, on Fn means in two segregating breeding populations of rice (Oryza sativa L.). The narrow-sense heritabilities of shoot sodium concentration were 0.42 and 0.43 in the two populations, respectively, and the corresponding values for the heritability of shoot potassium concentration were 0.46 and 0.52. The sodium: potassium ratio was apparently heritable (0.36 and 0.40) because it was regressed positively on sodium concentration and negatively on potassium concentration. There was no significant relationship between the shoot sodium and potassium concentrations themselves. It is concluded that sodium and potassium uptake in rice are controlled by different genes which segregate independently. The magnitude of the transpirational bypass flow was estimated to be some 10 times greater in rice than in wheat (Triticum aestivum L.) and was found to be highly correlated with sodium uptake in rice but not in wheat. It is concluded that the bypass flow provides an additional pathway for sodium uptake in rice and that this accounts for the functional and genetic independence of sodium and potassium uptake in rice and consequently for the lesser prominence of potassium:sodium discrimination in rice than in wheat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: KeywordsOryza sativa L.  ;  AFLP markers  ;  Selective genotyping  ;  Submergence tolerance  ;  QTL analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract By combining the amplified fragment length polymorphism (AFLP) technique with selective genotyping, we constructed a linkage map for rice and assigned each linkage group to a corresponding chromosome. The AFLP map, consisting of 202 AFLP markers, was generated from 74 recombinant inbred lines (RIL) which were selected from both extremes of the population (250 lines) with respect to the response to complete submergence. Map length was 1756 cM, with an average interval size of 8.5 cM. To assign linkage groups to chromosomes, we used 50 previously mapped AFLP markers as anchor markers distributed over the 12 chromosomes. Other AFLP markers were then assigned to specific chromosomes based on their linkage to anchor markers. This AFLP map is equivalent to the RFLP/AFLP map constructed previously as the anchors were in the same order in both maps. Furthermore, tests with two restriction fragment length polymorphism (RFLP) markers and two sequence-tagged site (STS) markers showed that they mapped in the expected positions. Using this AFLP map, a major gene for submergence tolerance was localized on chromosome 9. Quantitative trait loci (QTL) associated with submergence tolerance were detected on chromosomes 6, 7, 11, and 12. We conclude that the combination of AFLP mapping and selective genotyping provides a much faster and easier approach to QTL identification than the use of RFLP markers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 86 (1993), S. 333-338 
    ISSN: 1432-2242
    Keywords: Genetics ; Rice ; Salinity ; Tolerance ; Na-Kratio ; Diallel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The genetics of salinity tolerance in rice was investigated by a nine-parent complete diallel including reciprocals. Test materials involved susceptible (IR28, IR29, and MI-48), moderately tolerant (IR4595-4-1-13, IR9884-54-3-1E-P1, and IR10206-29-2-1), and tolerant (“Nona Bokra”, “Pokkali”, and SR26B) parents. Twoweek-old seedlings were grown in a salinized (EC = 12 dS/m) culture solution for 19 days under controlled conditions in the IRRI phytotron. Typical characteristics of salinity tolerance in rice were found to be Na+ exclusion and an increased absorption of K+ to maintain a good Na-K balance in the shoot. Genetic component analysis (GCA) revealed that a low Na-K ratio is governed by both additive and dominance gene effects. The trait exhibited overdominance, and two groups of genes were detected. Environmental effects were large, and the heritability of the trait was low. Our findings suggest that when breeding for salt tolerance, selection must be done in a later generation and under controlled conditions in order to minimize environmental effects. Modified bulk and single-seed descent would be the suitable breeding methods. Combining ability analysis revealed that both GCA and specific combining ability (SCA) effects were important in the genetics of salt tolerance. Moderately tolerant parents — e.g., IR4595-4-1-13 and IR9884-54-3-1E-P1 — were the best general combiners. Most of the best combinations had susceptible parents crossed either to moderate or tolerant parents. The presence of reciprocal effects among crosses necessitates the use of susceptible parents as males in hybridization programs. Large heterotic effects suggest the potential of hybrid rice for salt-affected lands.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2242
    Keywords: Breeding ; Rice ; Oryza sativa ; Salinity ; Selection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A multiple cross was constructed with the aim of combining component traits for the complex salinity resistance character. The aim was to combine donors for physiological traits with the agronomically desirable semidwarf/intermediate plant type and with the overall salinity resistance of the traditional tall land races. We report a study of selection strategies in the resulting breeding population. The effects of early selection for agronomic traits and early selection for low sodium transport were compared with a control population in which minimal selection was practised. Conventional selection for agronomic characters at early generations selected against low sodium-transporting (and thus potentially salt-tolerant) genotypes. In contrast, mild early selection for low sodium transport enriched the population in potentially salt-resistant genotypes but did not select against agronomic (semi-dwarf/intermediate) genotypes. It is concluded that selection for agronomic traits should be made after selection for salt resistance and, ideally, should be delayed until the population has reached near-homozygosity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2242
    Keywords: Aluminum toxicity ; Diallel analysis ; Genetics ; Rice ; Variability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A study was undertaken to investigate the variability among lowland rice cultivars and the mode of gene action of aluminum (Al) toxicity tolerance in rice. Pregerminated seeds were grown in a nutrient solution containing 30 ppm Al and in normal nutrient solution, and relative root length (RRL) was determined at the 14-day-old stage to characterize genotypes for tolerance. Sixty-two traditional rice cultivars grown on lowland acid sulfate soil areas of Asia and West Africa were tested. Tolerant varieties ‘Azucena’, ‘IRAT104’, and ‘Moroberekan’, moderately sensitive ‘IR29’ and ‘IR43’, and sensitive ‘IR45’ and ‘IR1552’ were used to investigate the genetics of tolerance by diallel analysis. Of the 62 cultivars tested, only 3 were found to be sensitive to A l toxicity. Among the tolerant cultivars identified, 11 (‘Siyam Kuning’, ‘Gudabang Putih’, ‘Siyam’, ‘Lemo’, ‘Khao Daeng’, ‘Siyamhalus’, ‘Bjm-12’, ‘Ketan’, ‘Seribu Gantang’, ‘Bayer Raden Rati’, and ‘Padi Kanji’) were found to possess higher levels of tolerance than the improved tolerant upland cultivar ‘IRAT104’. Diallel analysis revealed that high RRL is governed by both additive and dominance effects with a preponderance of additive effects. The trait exhibited partial dominance, and one group of genes was detected. Heritability was high, and environmenal effects were low. Findings suggest that when breeding for A1 toxicity tolerance, selection can be made in early generations. The pedigree method of breeding would be suitable. Combining ability analysis revealed the importance of both general combining ability (GCA) and specific combining ability (SCA) in the genetics of A1 toxicity tolerance in rice. GCA was more prevalent than SCA. Tolerant parens ‘Azucena’, ‘IRAT104’, and ‘Moroberekan’ were the best general combiners. The presence of reciprocal effects among crosses suggested the proper choice of parents in hybridization programs. Results indicated that ‘Azucena’, ‘IRAT 104’, and ‘Moroberekan’ should be used as the female in crosses for A1 toxicity tolerance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 89 (1994), S. 313-317 
    ISSN: 1432-2242
    Keywords: Genetics ; Rice ; Phosphorousefficiency ; Diallel analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The inheritance of phosphorous (P) — deficiency tolerance in rice was investigated by a sevenparent diallel. The parent materials involved were four P-efficient (IR20, IR54, IR28, and Mahsuri), one moderately P-efficient (TN1), and two P-inefficient (IR31406333-1 and IR34686-179-1-2-1), genotypes. Relative tilering ability (RTA) under P-deficient and P-supplemented soil conditions was the parameter used in determining the tolerance level of the different genotypes. Diallel graph analysis revealed that tolerant parents have an excess of recessive genes, while moderate and susceptible parents possess more dominant genes. Genetic-component analysis suggested that both additive and dominance gene effects are involved in the inheritance of P-deficiency tolerance in rice. The trait exhibited over doiminance as confirmed by the graphical analysis. Narrow-sense heritability of the trait was moderate (0.50) and environmental effects were low. Both the general combining ability (GCA) and the specific combining ability (SCA) were significant, but GCA was more prevalent than SCA. Tolerant parents exhibited a high GCA whereas susceptibles have a very poor GCA, suggesting that tolerant parents were mostly enriched in additive genes and susceptible parents in non-additive genes. Crosses involving two high general combiners showed low SCA effects whereas crosses between poor general combiners manifested highly-significant SCA values.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 97 (1998), S. 1361-1369 
    ISSN: 1432-2242
    Keywords: Key words Oryza sativa L. ; AFLP markers ; RFLP markers ; Phosphorus deficiency tolerance ; QTL analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The amplified fragment length polymorphism (AFLP) technique combined with selective genotyping was used to map quantitative trait loci (QTLs) associated with tolerance for phosphorus (P) deficiency in rice. P deficiency tolerant cultivar IR20 was crossed to IR55178-3B-9-3 (sensitive to P-deficiency) and 285 recombinant inbred lines (RILs) were produced by single-seed descent. The RILs were phenotyped for the trait by growing them in P-sufficient (10.0 mg/l) and P-deficient (0.5 mg/l) nutrient solution and determining their relative tillering ability at 28 days after seeding, and relative shoot dry weight and relative root dry weight at 42 days after seeding. Forty two of each of the extreme RILs (sensitive and tolerant) and the parents were subjected to AFLP analysis. A map consisting of 217 AFLP markers was constructed. Its length was 1371.8 cM with an average interval size of 7.62 cM. To assign linkage groups to chromosomes, 30 AFLP and 26 RFLP markers distributed over the 12 chromosomes were employed as anchor markers. Based on the constructed map, a major QTL for P-deficiency tolerance, designated PHO, was located on chromosome 12 and confirmed by RFLP markers RG9 and RG241 on the same chromosome. Several minor QTLs were mapped on chromosomes 1, 6, and 9.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2242
    Keywords: Oryza sativa L. ; Anther culture ; Yield ; Salt tolerance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Field experiments were conducted to evaluate and compare the yield and agronomic characteristics of anther-culture-derived (AC) lines in rice and the parents under saline and nonsaline soil conditions. The yield stability of two entries was also evaluated by comparing their performance under two distinct nonsaline soil environments. The test entries were planted in randomized complete block design with four replications at each test location. Data were collected on grain yield, yield components, and agronomic characteristics. This study demonstrates that through anther culture, it is possible to produce homozygous diploid lines in a short time. The possibility of regenerating recombinants with desirable characteristics such as good plant type and salinity tolerance, higher yield, and increased resistance to pests and diseases from both the parents is high.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 101 (2000), S. 1074-1081 
    ISSN: 1432-2242
    Keywords: Key words Elongation ability ; Submergence tolerance ; Oryza sativa L. ; Epistasis ; Abiotic stress ; Molecular markers ; Differential gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The adaptation of deepwater rice to flooding is attributed to two mechanisms, submergence tolerance and plant elongation. Using a QTL mapping study with replicated phenotyping under two contrasting (water qualities) submergence treatments and AFLP markers, we were able to identify several genes/QTLs that control plant elongation and submergence tolerance in a recombinant inbred rice population. Our results indicate that segregation of rice plants in their responses to different flooding stress conditions is largely due to the differential expression of a few key elongation and submergence tolerance genes. The most important gene was QIne1 mapped near sd-1 on chromosome 1. The Jalmagna (the deepwater parent) allele at this locus had a very large effect on internal elongation and contributed significantly to submergence tolerance under flooding. The second locus was a major gene, sub1(t), mapped to chromosome 9, which contributed to submergence tolerance only. The third one was a QTL, QIne4, mapped to chromosome 4. The IR74 (non-elongating parent) allele at this locus had a large effect for internal elongation. An additional locus that interacted strongly with both QIne1 and QIne4 appeared near RG403 on chromosome 5, suggesting a complex epistatic relationship among the three loci. Several QTLs with relatively small effects on plant elongation and submergence tolerance were also identified. The genetic aspects of these flooding tolerance QTLs with respect to patterns of differential expression of elongation and submergence tolerance genes under flooding are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5036
    Keywords: ascorbate-specific H2O2 scavenging system ; ferrous iron tolerance ; molecular markers ; Oriza sativa L
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ferrous iron (Fe2+) toxicity is a major disorder in rice prod uction on acid, flooded soils. Rice ( Oryza sativa L.) genotypes differ widely in tolerance to Fe2+ toxicity, which makes it possible to bre ed more tolerant rice varieties. Tissue tolerance to higher iron concentrations in plants has been considered to be important to Fe2+ tolerance in ri ce. Segregation for leaf bronzing and growth reduction due to Fe2+ to xicity was observed in a doubled haploid (DH) population with 135 lines derived from a Fe2+ tolerant japonica variety, Azucena, and a sensitive indic a variety, IR64 in a solution culture with Fe2+ stress condition at a Fe2+concentration of 250 mg L-1 at pH 4.5. To better understand the mechanism of tissue tolerance, Leaf Bronzing Index (LBI), total iron concentration in shoot tissue and the enzymes of ascorbate peroxidase (AP), dehydroascorbate reductase (DR) and glutathione reductase (GR), and concentrations of ascorbate (AS) and dehydroascorbate (DHA), which are involved in the ascorbate-specific H2O2-scavenging system, were determined for the population under Fe2+ stress. A non-normal distribution of LBI was found. About 38 lines showed no bronzing, while the lines with non-zero LBI values ranged from 0.05 to 0.85 and showed a normal distribution. The other parameters measured showed normal distribution. The total iron concentrations in the 38 tolerant lines ranged from 1.76 mg Fe g-1 to 4.12 mg Fe g-1 and was in a similar range as in the non-tolerant genotype (2.04 – 4.55 mg Fe g-1). No significant differences in the activities of the enzymes were found between the parents under normal culture, but remarkably higher Fe2+ induced enzyme activities were observed in the tolerant parent. AS was similar between the parents under both normal and Fe2+ stress, but its concentration was sharply decreased under Fe2+ stress. DHA was much lower in the tolerant parent than in the sensitive parent under Fe2+ stress. Single locus analysis and interval mapping analysis based on 175 molecular markers revealed that the interval flanked by RG345 and RZ19 on chromosome one was an important location of gene(s) for Fe2+ tolerance. The ascorbate-specific system for scavenging Fe2+-mediated oxygen free radicals may be an important mechanism for tissue Fe2+ tolerance. A gene locus with relative small effect on root ability to exclude Fe2+ was also detected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...