Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1424
    Keywords: proteoliposomes ; counterflow ; lactose carrier ; phospholipid requirement ; Escherichia coli ; reconstitution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The lactose carrier was extracted from membranes ofEscherichia coli and transport activity reconstituted in proteoliposomes containing different phospholipids. Two different assays f for carrier activity were utilized: counterflow and membrane potential-driven uptake. Proteoliposomes composed ofE. coli lipid or of 50% phosphatidylethanolamine−50% phosphatidylcholine showed very high transport activity with both assays. On the other hand, proteoliposomes containing asolectin, phosphatilcholine or 25% cholesterol/75% phosphatidylcholine showed good counterflow activity but poor membrane potentialdriven uptake. The discrepancy between the two types of transport activity in the latter group of three lipids is not due to leakiness to protons, size of proteoliposomes, or carrier protein content per proteoliposome. Apparently one function of the carrier molecule shows a broad tolerance for various phospholipids, while a second facet of the membrane protein activity requires very restricted lipid enviroment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 79 (1984), S. 185-193 
    ISSN: 1432-1424
    Keywords: reconstitution ; lactose transport ; membrane potential ; pH gradient ; proteolytic enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The lactose transport carrier from parental (X71/F'W3747) and mutant cells (54/F'5441) was reconstituted into proteoliposomes. Transport by the counterflow assay showed slightly greater activity in proteoliposomes prepared from extracts of the mutant membranes compared with that for the parental cell. The mutant carrier showed a threefold lowerK m but similarV max compared to the parent. On the other hand proteoliposomes from the mutant showed a defect in protonmotive force-driven accumulation, compared with the parent. With a pH gradient (inside alkaline) plus a membrane potential (inside negative) the parental proteoliposomes accumulated lactose 25-fold over the medium concentration while the mutant proteoliposomes accumulated sixfold. In a series of experiments proteoliposomes were exposed to proteolytic enzymes. Chrymotrypsin treatment resulted in 30% inhibition of counterflow activity for the reconstituted carrier from both parent and mutant. Papain produced 84% inhibition of transport by the reconstituted parental carrier but only 41% of that of the mutant. Trypsin and carboxypeptidase Y treatment had no effect on counterflow activity of either parent or mutant. Exposure of purified lactose carrier in proteoliposomes to carboxypeptidase Y resulted in the release of alanine and valine, the two C-terminal amino acids predicted from the DNA sequence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 75 (1990), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract A Na+/H+ antiporter catalyses coupled Na+ extrusion and H+ uptake across the membranes of extremely alkalophilic bacilli. This exchange is electrogenic, with H+ translocated inward 〉 Na+ extruded. It is energized by the ??2 component of the ?μH+ that is established during primary proton pumping by the alkalophile respiratory chain complexes. These complexes abound in the membranes of extreme alkalophiles. Combined activity of the respiratory chain, the antiporter, and solute transport systems that are coupled to Na+ re-entry, allow the alkalophiles to maintain a cytoplasmic pH that is several pH units more acidic than optimal external pH values for growth. There is no compelling evidence for a specific and necessary role for any ion other than sodium in pH homeostasis, and although there is very high cytoplasmic buffering capacity in the alkaline range, active mechanisms for pH homeostasis are crucial. Energization of the antiporter as well as the proton translocating F1F0-ATPase that catalyses ATP synthesis in the extreme alkalophiles must accommodate the problem of the low net ?μH+ and the very low concentrations of protons, per se, in the external medium. This problem is by-passed by other bioenergetic work functions, such as solute uptake or motility, that utilize sodium ions for energy-coupling in the place of protons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-6881
    Keywords: H+-ATPase ; molecular modeling ; helical hairpin ; aromatic slipper ; coupling ; molecular dynamics ; yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract A molecular model for transmembrane segments 1 and 2 from the fungal proton pumping ATPase has been developed, and this structure is predicted to form a helical hairpin loop structure in the membrane. This region was selected because it is highly conformationally active and is believed to be an important site of action for clinically important therapeutics in related animal cell enzymes. The hairpin loop is predicted to form an asymmetric tightly packed structure that is stabilized by an N-cap between D140 and V142, by hydrogen bonding between residues in the turn region and the helices, and by π-π interactions between closely apposed aromatic residues. A short four-residue S-shaped turn is stabilized by hydrogen bonding but is predicted to be conformationally heterogeneous. The principal effect of mutations within the hairpin head region is to destabilize the local close packing of side groups which disrupts the pattern of hydrogen bonding in and around the turn region. Depending on the mutation, this causes either a localized or a more global distortion of the primary structure in the hairpin region. These altered structures may explain the effects of mutations in transmembrane segments 1 and 2 on ATP hydrolysis, sensitivity to vanadate, and electrogenic proton transport. The conformational sensitivity of the hairpin structure around the S-turn may also account for the effects of SCH28080 and possibly ouabain in blocking ATPase function in related animal cell enzymes. Finally, the model of transmembrane segments 1 and 2 serves as a template to position transmembrane segments 3 and 8. This model provides a new view of the H+-ATPase that promotes novel structure/function experimentation and could serve as the basis for a more detailed model of the membrane sector of this enzyme.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...