Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0992-7689
    Keywords: Magnetospheric physics ; Auroral phenomena ; Magnetosphere-ionosphere interactions ; Storms and substorms
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Interhemispheric contrasts in the ionospheric convection response to variations of the interplanetary magnetic field (IMF) and substorm activity are examined, for an interval observed by the Polar Anglo-American Conjugate Experiment (PACE) radar system between ∼1600 and ∼2100 MLT on 4 March 1992. Representations of the ionospheric convection pattern associated with different orientations and magnitudes of the IMF and nightside driven enhancements of the auroral electrojet are employed to illustrate a possible explanation for the contrast in convection flow response observed in radar data at nominally conjugate points. Ion drift measurements from the Defence Meteorological Satellite Program (DMSP) confirm these ionospheric convection flows to be representative for the prevailing IMF orientation and magnitude. The location of the fields of view of the PACE radars with respect to these patterns suggest that the radar backscatter observed in each hemisphere is critically influenced by the position of the ionospheric convection reversal boundary (CRB) within the radar field of view and the influence it has on the generation of the irregularities required as scattering targets by high-frequency coherent radar systems. The position of the CRB in each hemisphere is strongly controlled by the relative magnitudes of the IMF Bz and By components, and hence so is the interhemispheric contrast in the radar observations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 14 (1996), S. 803-810 
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A statistical investigation of the relationship between VHF radar auroral backscatter intensity and Doppler velocity has been undertaken with data collected from 8 years operation of the Wick site of the Sweden And Britain Radar-auroral Experiment (SABRE). The results indicate three different regimes within the statistical data set; firstly, for Doppler velocities 〈200 m s−1, the backscatter intensity (measured in decibels) remains relatively constant. Secondly, a linear relationship is observed between the backscatter intensity (in decibels) and Doppler velocity for velocities between 200 m s−1 and 700 m s−1. At velocities greater than 700 m s−1 the backscatter intensity saturates at a maximum value as the Doppler velocity increases. There are three possible geophysical mechanisms for the saturation in the backscatter intensity at high phase speeds: a saturation in the irregularity turbulence level, a maximisation of the scattering volume, and a modification of the local ambient electron density. There is also a difference in the dependence of the backscatter intensity on Doppler velocity for the flow towards and away from the radar. The results for flow towards the radar exhibit a consistent relationship between backscatter intensity and measured velocities throughout the solar cycle. For flow away from the radar, however, the relationship between backscatter intensity and Doppler velocity varies during the solar cycle. The geometry of the SABRE system ensures that flow towards the radar is predominantly associated with the eastward electrojet, and flow away is associated with the westward electrojet. The difference in the backscatter intensity variation as a function of Doppler velocity is attributed to asymmetries between the eastward and westward electrojets and the geophysical parameters controlling the backscatter amplitude.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 16 (1998), S. 441-449 
    ISSN: 0992-7689
    Keywords: Substorms ; Auroral surges ; Plasma convection ; Sub-auroral ion drifts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Substorm-associated radar auroral surges (SARAS) are a short lived (15–90 minutes) and spatially localised (∼5° of latitude) perturbation of the plasma convection pattern observed within the auroral E-region. The understanding of such phenomena has important ramifications for the investigation of the larger scale plasma convection and ultimately the coupling of the solar wind, magnetosphere and ionosphere system. A statistical investigation is undertaken of SARAS, observed by the Sweden And Britain Radar Experiment (SABRE), in order to provide a more extensive examination of the local time occurrence and propagation characteristics of the events. The statistical analysis has determined a local time occurrence of observations between 1420 MLT and 2200 MLT with a maximum occurrence centred around 1700 MLT. The propagation velocity of the SARAS feature through the SABRE field of view was found to be predominately L-shell aligned with a velocity centred around 1750 ms−1 and within the range 500 m s−1 and 3500 m s−1. This comprehensive examination of the SARAS provides the opportunity to discuss, qualitatively, a possible generation mechanism for SARAS based on a proposed model for the production of a similar phenomenon referred to as sub-auroral ion drifts (SAIDs). The results of the comparison suggests that SARAS may result from a similar geophysical mechanism to that which produces SAID events, but probably occurs at a different time in the evolution of the event.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...