Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1459-1467 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: This article presents a new method for topological analysis of molecular surfaces. Explicit representation of the van der Waals interaction according to the Lennard-Jones potential enabled determination of the function of the maximum radius of a hypothetical atomic probe in any location, r, inside the host's domain. The size of the spatial gradient of the maximal probe's volume (named the ξ value) at that location was found to be a good descriptor of the local shape of the host. Consequently, mapping of the host domain according to the ξ value could be used as a quantitative tool for localization of potent local binding sites. The proposed method is illustrated by mapping an organic host (calix[4]arene) as well as an enzyme (HIV-aspartic protease). Analysis of the calix[4]arene derivative revealed that the proposed method reproduces immediately the known binding site of conic calix[4]arenes. The second test case demonstrated how the catalytic site of the enzyme could be disassembled into many local binding sites. Some of these sites, located according to the proposed method, were found to follow the shape of a known inhibitor of the enzyme in a complementary manner. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 15 (1994), S. 1393-1402 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: In this article we represent the development of an artificial-intelligence-based method for the automatic design of valid chemical structures (AISD). The key feature of the proposed algorithm is its ability to mimic many decision-making processes carried by the human drug designer during a design session. The manual drug-design process is analyzed and transformed into a computerized form by associating a weight factor with each term. These weights enable the translation of the drug designer's intution into probabilities that control the flow of the design process. The input required to initiate a design session might be as minimal as the geometry of a previously existed pharmacophoric model, up to the three-dimensional geometry of the host receptor. A design application is demonstrated by the implementation of the proposed algorithm for the design of new potent sweeteners. © 1994 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...