Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Bioresource Technology 48 (1994), S. 169-172 
    ISSN: 0960-8524
    Keywords: Cellulose ; citrus waste ; fermentation ; hemicellulose ; pectins ; polysaccharide ; xanthan
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Ultramicroscopy 17 (1985), S. 164 
    ISSN: 0304-3991
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0044-8486
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 21 (1979), S. 1191-1207 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A Source of high-quality protein for animal feed, based upon algae recovered in the process of upgrading waste oxidation pond effluents and promising to be particularly economical, is being developed at the Technion. Unlike other types of single cell protein(SCP), the algal protein does not have to return the full production cost but only that of concentration and final processing. The balance is shared by the value of waste disposal and the reclaimed water. Whereas such systems as activated sludge require considerable mechanical energy to supply the oxygen needed for aerobically degrading organics in wastewater, oxidation ponds utilize solar energy for that purpose. The sludge obtained when their effluents are clarified consists largely of algae, bacteria, fungi, and zooplankton in relative proportions varying with operating conditions, and contains 40-60%(dry basis) high-quality protein. The high rate oxidation pond (a particularly intensive type of pond) produces on the average 34 g/m27sol;day solids, or over 100 tons/ha (hectare) annually. Two clarification routes have been found promising: centrifugation and alum flocculation followed by frothflotation. The latter route is less expensive in terms of both fixed and operating cost, and gives clarified effluent of higher quality, which can be seasonally stored with minimal eutrophication because the aluminum removes most of the phosphate from the effluent. A good product has been obtained by drum-drying the concentrate, and preliminary feeding tests have indicated that it can replace at least 1/4 of the soymeal in broiler rations and 2/3 of the fishmeal in carp feed. No ill effect of the aluminum in the product recovered by alum flocculation has been found so far a process for removing and recycling the aluminum has been developed nonetheless, in case ill effects do show up in further tests. The combined value of the benefits derived from a system centered around the high-rate oxidation pond with clarification by flocculation-flotation, in terms of waste treatment by alternative means, potable water saved, and soymeal replaced, significantly exceeds estimated cost.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 24 (1982), S. 579-594 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Theoretical considerations confirmed by outdoor experiments indicated carbon limitation of biomass production in high-rate oxidation ponds at certain seasonal and operational conditions. Apparently, free carbon dioxide concentration in the pond is the major determinant of carbonlimiting algal photosynthesis. High concentrations of free CO2 are provided through bacterial respiration which is the main contributor to algal photosynthesis. At high photosynthetic activities and low organic loadings, free CO2 concentrations are low; its flux into algal cells determines photosynthesis and biomass production rate in the pond.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 26 (1984), S. 142-147 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Biomass autoflocculation in outdoor algal cultures was found to be associated with increases of culture pH levels, due to CO2 consumption by the algal photosynthetic activity. Under these alkaline conditions, some medium chemical ions precipitated together with the algal biomass. The chemical substances involved with the process and its dependence on pH value were studied by simulation of autoflocculation in laboratory experiments. Proper concentrations of calcium and orthophosphate ions in the medium are important for autoflocculation and, in order to attain it within the pH range 8.5-9.0, the culture should contain 0.1mM-0.2mM orthophosphate and 1.5mM-2.5mM calcium prior to raising the pH level. Calcium phosphate precipitates are considered as the flocculating agent which reacts with the negatively charged surface of the algae and promotes aggregation and flocculation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...