Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 20 (1999), S. 435-443 
    ISSN: 1572-9567
    Keywords: corresponding states ; HFC-143a ; viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The viscosity of gaseous HFC-143a(1,1,1-trifluoroethane) was measured with an oscillating-disk viscometer of the Maxwell type at temperatures from 298.15 to 423.15 K and at pressures up to the saturated vapor pressure at each temperature under subcritical conditions or up to 9 MPa under supercritical conditions. Intermolecular potential parameters of HFC-143a for the extended corresponding states were determined from the viscosity data at 0.1 MPa. An empirical viscosity equation as functions of temperature and density is proposed to interpolate the present experimental results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 20 (1999), S. 445-453 
    ISSN: 1572-9567
    Keywords: corresponding states ; HFC-125 ; oscillating-disk viscometer ; viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract This paper reports experimental results lor the viscosity of gaseous HFC-125 (pentafluoroethane) under high pressures. The measurements were carried out with an oscillating-disk viscometer of the Maxwell type at temperatures from 298.15 to 423.15 K and at pressures up to the saturated vapor pressures at each temperature at subcritical conditions or up to 9 MPa at supercritical temperatures. Intermolecular scaling parameters of HFC-125 for the extended corresponding states were determined from the viscosity data at 0.1 MPa. An empirical viscosity equation is proposed to interpolate the present experimental results as a function of temperature and density.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 19 (1998), S. 1285-1295 
    ISSN: 1572-9567
    Keywords: HFC-134a ; Lennard–Jones potential ; viscosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The viscosity of gaseous HFC-134a (1,1,1,2-tetrafluoroethane) was measured with an oscillating disk viscometer of the Maxwell type from 298.15 to 398.15 K at pressures up to 5.5 MPa. Intermolecular potential parameters for the Lennard–Jones 12-6 model were determined from the viscosity data at 0.1 MPa. The viscosity equation developed by Krauss et al. was applied to correlate the present viscosity data. In addition, the correlations proposed by Stiel and Thodos and by Lee and Thodos were tested for fitting the experimental viscosity data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...