Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 79 (2001), S. 3140-3142 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Nanoporous silica thin films with low dielectric constants were deposited by gas evaporation of SiO2 nanoparticles in an argon atmosphere. With increasing gas pressure during the evaporation, the dielectric constant decreases, while the porosity increases. The correlation between the dielectric constant and porosity is well modeled by a serial connection of two capacitors, one with air and the other with SiO2 as the dielectric medium. This suggests that the dielectric constant of the nanoporous silica thin film using the gas evaporation technique is more effectively lowered by forming "uniformly" distributed voids of closed gaps than those of the nanoporous silica films with pores extending from the back to front surface. Therefore, the former nanoporous silica thin film requires less porosity to obtain a low dielectric constant and is regarded as an ideal low-k material. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...