Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Sound and Vibration 167 (1993), S. 511-528 
    ISSN: 0022-460X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bradford : Emerald
    Engineering computations 22 (2005), S. 429-452 
    ISSN: 0264-4401
    Source: Emerald Fulltext Archive Database 1994-2005
    Topics: Technology
    Notes: Purpose - Shells are widely used structural systems in engineering practice. These structures have been used in the civil, automobile and aerospace industries. Many shells are designed using the finite element analysis through the conventional and costly trial and error scheme. As a more efficient alternative, optimization procedures can be used to design economic and safe structures. Design/methodology/approach - This paper presents developments, integration and applications of reliable and efficient computational tools for the structural optimization of variable thickness plates and free-form shells. Topology, sizing and shape optimization procedures are considered here. They are applied first as isolated subjects. Then these tools are combined to form a robust and reliable fully integrated design optimization tool to obtain optimum designs. The unique feature is the application of a flexible integrally stiffened plate and shell formulation to the design of stiffened plates and shells. Findings - This work showed the use of different optimization strategies to obtain an optimal design for plates and shells. Both topology optimization (TO) and structural shape optimization procedures were considered. These two optimization applications, as separate procedures produce new designs with a great improvement when compared to the initial designs. However, the combination of stiffening TO and sizing optimization using integrally stiffened shells appears as a more attractive tool to be used. This was illustrated with several examples. Originality/value - This work represents a novel approach to the design of optimally stiffened shells and overcomes the drawbacks of both topology optimization and structural shape optimization procedures when applied individually. Furthermore, the unique use of integrally stiffened shell elements for optimization, unlike conventional shell-stiffening optimization techniques, provided a general and extremely flexible tool.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...