Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 1375-1388 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Earlier work of Sinclair and Jackson that treats the laminar flow of gas-solid suspensions is extended to model dilute turbulent flow. The random particle motion, often exceeding the turbulent flucutations in the gas, is obtained using a model based on the kinetic theory of granular materials. A two-equation low Reynolds number turbulence model is modified to account for the presence of the dilute particle phase. Comparisons of the model predictions with available experimental data for the mean and fluctuating velocity profiles for both phases indicate that the resulting theory captures many of the flow features observed in the pneumatic transport of large particles. THe model predictions did not manifest an exterme sensitivity to the degree of inelasticity in the particle-particle collisions for the range of solid loading ratios investigated.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 40 (1994), S. 380-380 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 853-869 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Numerous experimental investigations on the vertical transport of dense gas-solid suspensions indicate that particles tend to segregate toward the tube wall. Although models based on the kinetic theory analogy can predict such patterns for perfectly elastic particle-particle collisions, the predictive ability of these models breaks down for inelastic collisions. In the present effort, a mathematical model is developed that incorporates two mechanisms that give rise to the lateral segregation of solids: interactions associated with individual particles based on a kinetic theory treatment and interactions associated with collections of particles based on an analogy with single-phase turbulent flows. Although these two mechanisms have been treated independently by previous workers, their combined contributions to the overall flow behavior have not been thoroughly investigated. The effect of such a treatment on the sensitivity of the model predictions to the inelasticity of particle-particle collisions is explored. A key element in eliminating the undue sensitivity appears to be a consideration of the effects associated with the collective motion of particles on the kinetic theory expressions. The resulting model can predict the expected segregation patterns for systems characterized by inelastic collisions, as well as many of the other salient features of vertical gas-solid flows.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...