Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 589 (1990), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 33 (1994), S. 667-675 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 22 (1983), S. 687-687 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 8 (1969), S. 189-192 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 33 (1987), S. 529-539 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Single-stage separation of ternary gas mixtures of He, CO2, and N2 in a hollow-fiber permeator that simultaneously houses two different types of membranes, cellulose acetate and silicone rubber, was investigated. The two membranes have reverse selectivities with respect to He and CO2. Such a two-membrane permeator separates the feed into three streams, two permeates and one reject, each stream being enriched in a different component. The species permeabilities through each membrane were measured independently, and these values were utilized in a simulation that incorporates the fiber lumen pressure drops, the elastic deformation of the silicone capillaries, and the asymmetric structure of the CA membrane. Simulation results are compared with experimental data. Effects of flow pattern, relative permeation areas of the two membranes, permeate pressure ratios, feed composition, and membrane selectivities are studied. Advantages of the two-membrane scheme over the conventional permeators with only one kind of membrane are discussed.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 34 (1988), S. 1698-1708 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The hollow fiber contained liquid membrane (CLM) is a thin liquid film contained in the interstices of two sets of intermingled microporous hollow fine fibers. Organic CLM-s have been used here for the separation of solutes from an aqueous feed into an aqueous strip. Solutes studied are phenol and acetic acid. The separations are carried out in either hydrophilic or hydrophobic hollow fiber CLM permeator modules, using a variety of organic liquids (e.g., decanol, methyl isobutyl ketone, xylene) as membranes. First-order models have been developed to predict the overall solute transfer coefficients adequately. The transfer coefficient can be enhanced significantly when a chemical reaction is carried out on the strip side using NaOH. The advantages of the CLM structure include operational stability, independent control of membrane phase pressure, automatic replenishment of the lost membrane liquid, and absence of the need for preequilibration. These features are demonstrated here, even for systems with considerable aqueous-organic mutual solubilities.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 37 (1991), S. 383-393 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Citric acid was successfully separated from an aqueous solution using the hollow fiber contained liquid membrane (HFCLM) technique. In this technique, the organic liquid membrane is contained in the shell side between two sets of hollow fibers; feed solution flows through one set of fibers and the strip solution flows through the other set. Tri-n-octylamine diluted in various organic solvents was used as a complexing agent for facilitated transport of citric acid from an aqueous solution. Pure water and aqueous sodium hydroxide were used as stripping agents. Membrane life and stability problems encountered in supported liquid membranes are eliminated. A mathematical model of facilitated solute transport through HFCLM that accounts for the interfacial reversible reaction kinetics and diffusion process inherent in carrier-facilitated transport is presented. Experimental data agreed well with the theoretical predictions for permeators achieving almost complete solute recovery.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 34 (1988), S. 177-188 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Extensive studies on dispersion-free solvent extraction have been carried out using modules made with either hydrophobic or hydrophilic microporous hollow-fiber membranes. Membrane and boundary layer resistances have been characterized for both kinds of hollow fiber using solvent extraction systems with a wide variation of distribution coefficients and interfacial tensions. It has been found that the Graetz solution for a constant wall concentration describes satisfactorily mass transfer on the lumen side of a hollow-fiber device. A correlation of the form NSh = [Dh(1 - φ)/L]NRe0.6NSc0.33 appears to provide a close fit to the shell-side mass transfer coefficient data. The perforamnce characteristics of dispersion-free extraction in hollow-fiber modules have been considered against those of commercial packed-bed extractors. A perspective has been provided on comparative utilities of hydrophobic or hydrophilic hollow fibers for a given solvent extraction problem.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 36 (1990), S. 450-460 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Nondispersive back extraction of phenol from methyl isobutyl ketone into caustic solutions has been studied using microporous polymeric membranes in flat as well as hollow-fiber form. Dispersion-free reactive back extraction was successfully achieved using the correct phase pressure difference. The predictive capabilities of the mathematical models developed for such a system have been investigated. This study indicates that the overall mass transfer can be controlled by boundary layer resistance and/or the membrane transfer resistance, depending on the flow configuration, the nature of the membrane, and the regime of caustic concentration. Individual film transfer coefficients on the shell side and the tube side have been isolated for different hollow-fiber modules. A commercially available 15 cm long module containing hydrophobic microporous hollow fibers has provided very low values of height of transfer unit (HTU) and very high phenol recoveries. The experimentally obtained HTUs of this module have been predicted with significant accuracy.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 42 (1996), S. 409-421 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A novel gas purification technique called rapid pressure swing absorption (RAPSAB) was developed by integrating the best features of membrane contacting, gas-liquid absorption, and pressure swing adsorption (PSA). In this cyclic separation process, a well-packed microporous hydrophobic hollow-fiber module was used to achieve nondispersive gas absorption from a high-pressure feed gas into a stationary absorbent liquid on the module shell side during a certain part of the cycle followed by desorption of absorbed gases from the liquid in the rest of the cycle. The total cycle time varies between 20 s and upwards. Separation of mixtures of N2 and CO2 (around 10%) where CO2 is the impurity to be removed was studied using absorbent liquids such as pure water and a 19.5% aqueous solution of diethanolamine (DEA). Three RAPSAB cycles studied differ in the absorption part. Virtually pure N2 streams were obtained with DEA as absorbent demonstrating the capability of bulk separation to very high levels of purification. Numerical models developed predict the extent of purification for pure water and the DEA solution for one of the simpler cycles. Model simulations describe the observed behavior well.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...