Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 66 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Mast cells are pleiotropic bone marrow-derived cells found in mucosal and connective tissues and in close apposition to neurons, where they play important roles in tissue inflammation and in neuroimmune interactions. Connective tissue mast cells, with which intracranial mast cells share many characteristics, contain cytokines that can cause inflammation. Here, we report that myelin basic protein, a major suspected immunogen in multiple sclerosis, as well as an antigenic stimulus, provokes mast cells to trigger a delayed cytotoxicity for neurons in mixed neuron-glia cultures from hippocampus. Neurotoxicity required a prolonged period (12 h) of mast cell incubation, and appeared to depend largely on elaboration of the free radical nitric oxide by astrocytes. Activation of astrocytes was mediated, in part, by mast cell-secreted tumor necrosis factor-α. Myelin basic protein and 17β-estradiol had a synergistic action on the induction of mast cell-associated neuronal injury. The cognate mast cell line RBL-2H3, when subjected to an antigenic stimulus, released tumor necrosis factor-α which, together with exogenous interleukin-1β (or interferon-γ), induced astroglia to produce neurotoxic quantities of nitric oxide. A small but significant proportion of mast cell-derived neurotoxicity under the above conditions occurred independently of glial nitric oxide synthase induction. Further, palmitoylethanolamide, which has been reported to reduce mast cell activation by a local autacoid mechanism, decreased neuron loss resulting from mast cell stimulation in the mixed cultures but not that caused by direct cytokine induction of astrocytic nitric oxide synthase. These results support the notion that brain mast cells could participate in the pathophysiology of chronic neurodegenerative and inflammatory diseases of the nervous system, and suggest that down-modulation of mast cell activation in such conditions could be of therapeutic benefit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The B subunit of cholera toxin, which is multiva-lent and binds specifically to GM1 ganglioside on the cell surface, has previously been used as a ganglioside-specific probe to regulate DNA synthesis in thymocytes and fibro-blasts. To explore in more detail this growth-regulatory action of gangliosides, C6 glioma cells (which are GM1 ganglioside deficient) were used as a model system. When cultures of C6 cells were first treated with GM1, followed by exposure to the B subunit, proliferation was inhibited, as measured by 3H-labeled thymidine incorporation into DNA. Pretreatment of the cells with 50 μM GM1 for 15 min (followed by washing with fetal calf serum) and incubation with 1 μ/ml of B subunit for 21 h was sufficient to reduce DNA synthesis to 15% of control values (and confirmed by autoradiographic analysis), although maximal inhibition could be achieved with as little as 30 min exposure to B, followed by washing. Furthermore, the B subunit inhibited the response of the C6 cells to basic fibroblast growth factor only following GM1 pretreatment. The B subunit-induced inhibition of DNA synthesis was specific for the ganglioside GM 1, and was unrelated to increases of cyclic AMP. These results demonstrate that cell-incorporated GM1 ganglioside may act as a receptor capable of undergoing a specific ligand interaction, subsequently affecting molecular processes at the nuclear level.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The incorporation of radioactive precursors into gangliosides and other glycolipids, glycoproteins, and total lipids has been studied in rat pheochromocytoma PC12 cells. Starting with the same PC12 cell pool, cultures displaying different degrees of neuritic expression in response to nerve growth factor (NGF) and combinations of serum ganglioside GM1 were produced. Attempts were then made to correlate neuritic regulation with biochemical performances of these cells. NGF stimulates the incorporation of [3H]galactose into gangliosides and other glycolipids and glycoproteins and [14C]acetate into total lipids, regardless of the serum concentration. NGF both increased their initial labeling rates and promoted additional and more extensive labeling from culture day 4 onward. Unexpectedly, exogenous GM1 also elicited an increase in ganglioside labeling as well as that of the other lipid classes, but not of glycoproteins. The GM1-induced increase was evident at higher serum concentrations (1%) regardless of the presence or absence of NGF, but not apparent in low (0.15%) serum. Serum levels themselves did not affect labeling patterns in the absence of NGF and GM1. GM1-induced stimulation of labeling reflects an increase in the synthetic activities of the cells, and not increased precursor uptake or reduced product degradation. For all constituents stimulated by GM1, concurrent treatment with NGF produces cumulative effects, suggesting independent mechanisms of action by the two molecules.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 42 (1984), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Suspensions of neurons prepared from embryonic day 12 (E12) chick sympathetic ganglia were incubated with [methyl-3H]methionine in the absence of nerve growth factor (NGF). Presentation of the factor for different periods of time resulted in an approximate threefold stimulation of radioactivity incorporated into total phospholipid, followed by a rapid decline thereafter. Both the magnitude and the time of the response were dependent on the NGF concentration used. Also examined were possible relationships of phospholipid methylation to two other short-latency responses to NGF, i.e., control of the Na+,K+-pump and elevation of cyclic AMP content. Incubation of E12 sympathetic neurons with known transmethylase inhibitors (shown to be active in the present system) failed to prevent reactivation of the Na+,K+-pump in response to NGF administration. E16 sympathetic neurons and E15 sensory neurons, which do not depend on exogenous NGF for control of their Na+,K+-pump, still show a stimulation of phospholipid methylation when challenged with the factor. Blockage of the pump with ouabain also fails to prevent a methylation response. Thus, the pump and methylation responses to NGF occur independently of each other. Intact E8 chick dorsal root ganglia, but not E12 sympathetic ganglia, display a rapid and transient rise in their cyclic AMP content when presented with NGF. At a concentration of 10 biological units/ml, NGF elicits a peak of phospholipid methylation at 4 min, and a peak of cyclic AMP at 10 min. Methylation inhibitors prevent the methylation response, but not that of cyclic AMP. Dibutyryl cyclic AMP, which is able to cause a cyclic AMP elevation similar to NGF, failed to produce any stimulation of phospholipid methylation. These findings are discussed in terms of the role of short-latency responses in the mode of action of NGF.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 64 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The role of inflammatory cytokines in the pathogenesis of neurological disorders is not entirely clear. The neurotoxic effects of cytokines, and perhaps indirectly bacterial endotoxins, could be mediated by the stimulation of immunocompetent cells in the brain to produce toxic concentrations of nitric oxide (NO) and reactive nitrogen oxides. NO is a short-lived, diffusible molecule that has a variety of biological activities including vasorelaxation, neurotransmission, and cytotoxicity. Both constitutive and inducible NO synthase has been described in astrocytes in vitro. Here we demonstrate that newborn mouse cortical astrocytes, when coincubated with neonatal mouse cerebellar granule cells or hippocampal neurons, induced neurotoxicity upon stimulation with endotoxin (lipopolysaccharide) (ED50 30 ng/ml). Astrocytes were unresponsive to the cytokines tumor necrosis factor-α or interleukin-1β individually, but exhibited a marked synergistic stimulation in their combined presence. Moreover, meningeal fibroblasts treated with tumor necrosis factor-α, but not interleukin-1β or lipopolysaccharide, elaborated neurotoxicity for cocultured granule cells (ED50 30 U/ml). In cocultures of immunostimulated astrocytes or meningeal fibroblasts, neurotoxicity was blocked by the NO synthase inhibitors Nω-nitro-l-arginine and Nω-nitro-d-arginine methyl ester, and by oxyhemoglobin, which inactivates NO. Astroglial-induced neurotoxicity was not affected by N-methyl-d-aspartate receptor antagonists. Superoxide dismutase, which degrades superoxide anion, attenuated astrocyte- and fibroblast-mediated neurotoxicity, indicating that endogenous superoxide anion may react with NO to form toxic peroxynitrite and its breakdown products. These findings suggest a potentially important role for glial- and meningeal fibroblast-induced NO synthase in the pathophysiology of CNS disease states of immune or inflammatory origin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Canavan's disease is an autosomal recessive disorder characterized by a deficiency of aspartoacylase and accumulation of N-acetylaspartic acid (NAA), leading to a severe leukodystrophy and spongy degeneration of the brain. N-Acetylaspartylglutamate (NAAG), the presumed product of NAA, also accumulates in this disease. The endogenous dipeptide NAAG has been suggested to have low potency at NMDA receptors. Here we have tested the actions of NAAG and NAA on NMDA-evoked responses in cultured cerebellar granule cells. In differentiating granule cells grown in low-K+ medium, NAAG negated the survival-promoting effects of NMDA but not K+ depolarization. Neither NAAG nor NAA alone promoted cell survival in low-K+ medium. The modest trophic action of 50 µM kainic acid in low-K+ medium was reinforced by the NMDA receptor antagonist dizocilpine maleate and by NAAG. In K+-differentiated granule cells, NAAG raised the threshold of NMDA neurotoxicity but not that of kainate. The observed activities of NAAG were overcome by excess NMDA and were not mimicked by NAA. These data raise the possibility that disruption of NMDA receptor processes by NAAG may be of pathophysiological relevance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Rat brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) were engineered for expression in a baculovirus-infected Spodoptera frugiperda insect cell system. The BDNF and NT-3 from the culture supernatants were purified by ion-exchange and reverse-phase chromatography to apparent homogeneity. The purification procedure yielded ∼2 mg of pure rat BDNF or NT-3 per liter of culture supernatant. A single N-terminus only was found for either secreted molecule and was analogous to that predicted from the corresponding cDNA sequence. The recombinant neurotrophins obtained were also homogeneous with regard to molecular weight and amino acid sequence. In their native conformation, the insect cell-produced rat BDNF and NT-3 molecules were homodimers consisting of 119 amino acid polypeptide chains. Thus, although the genes transfected into the S. frugiperda cells coded for proBDNF or proNT-3, the BDNF and NT-3 recovered after purification were 〉95% fully processed, mature protein. Mature recombinant rat BDNF and NT-3 were found not to be significantly glycosylated. Pure, recombinant rat BDNF and NT-3 promoted the survival of embryonic dorsal root ganglion neurons in the low picomolar range. Because recombinant rat BDNF and NT-3 can be obtained in large quantities, purified to near homogeneity, and are identical in amino acid sequence to the corresponding human proteins, they are suitable for evaluation in animal models.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Secondary microcultures of newborn rat cerebrum astroglial (AG) cells, maintained in a serum-free, chemically defined medium, were treated with various agents known to elevate intracellular cyclic AMP (cAMP) levels. Earlier studies had shown these drugs to induce a process-bearing (stellate) morphology in the AG cells, a response that was antagonized by the presence of gangliosides. One millimolar dibutyryl cyclic AMP (dBcAMP), 10 μM forskolin, 12 nM cholera toxin, and 30 μM isoproterenol all raised intracellular cAMP levels, from basal values of 3 pmol/106 cells to 30–30,000 pmol/106 cells, depending on the agent tested. dBcAMP caused the greatest elevation, and forskolin the least. The timing and/or the level of the AMP response did not precisely correlate with those of the stella-tion response. Values of ED50 with the four agents, as determined for the cAMP response, were always higher than stellation ED50 values in all treatments, and ED50 did not correlate with the maximal levels of cyclic AMP induced by the four agents. The capacity of ganglioside GMl to block the stellation response to the four agents was not accompanied by a similar capacity to block the cAMP responses. Lysophosphatidylserine (lysoPS) had the capacity to induce AG cell stellation as well, without altering the basal level of cAMP. Both lysoPS and gangliosides, therefore, may act directly on the cellular machinery underlying the stellation response without involving changes in intracellular AMP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 38 (1982), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: We had previously reported that in vitro survival of chick embryo ciliary ganglionic neurons can be assured by the addition to the culture medium of appropriate amounts of soluble macromolecular agents termed ciliary neuronotrophic factors. Particularly rich sources of one such factor are aqueous extracts from chick embryo intraocular tissues that include the smooth and striated musculature innervated by ciliary ganglionic neurons. We report here that this eye extract also contains agents that we term ganglionic neuronotrophic factors that support the survival of 11-day chick embryo sympathetic and neonatal mouse dorsal root ganglionic neurons, two traditional targets of nerve growth factor (NGF). Using a recently developed microassay procedure we found that these ganglionic activities are not inactivated by rabbit, rat, or guinea pig antisera raised against the 2.5S (beta) subunit of male mouse submaxillary NGF, rabbit antisera against 7S NGF, or quail antisera against cobra venom NGF. Both the ciliary and ganglionic activities can be quantitated simultaneously by using 24-h in vitro microassays, thus permitting a direct comparison of their respective properties. Both activities were found to (a) adsorb to DE52 cellulose and coelute at a similar salt concentration, (b) focus and be recovered from isoelectric polyacrylamide gels at exactly the same pH region, (c) be heat-and partially acid-labile, but base-stable, and (d) be inactivated by exposure to trypsin. These results suggest that the ciliary and ganglionic neuronotrophic activities are associated with the same protein.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 37 (1981), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Chick embryo dorsal root ganglia display a rapid and transient rise in their cyclic AMP content when presented with nerve growth factor. These ganglia also depend on nerve growth factor for control of their intracellular Na+ and K+ levels. A sequential relationship between the cyclic AMP and Na+ responses is not readily apparent. Incubation of chick sensory ganglia in a sodium-free medium does not prevent the cyclic AMP response to nerve growth factor from occurring. When ganglia are first incubated with ouabain for 6 h, presentation of nerve growth factor elicits a cyclic AMP response, but no Na+ response. The cyclic AMP response therefore does not depend on the Na+ environment. An initial presentation of nerve growth factor to the ganglia for 30 min, followed by its withdrawal and subsequent re-administration at different intervals over several hours failed to result in a second cyclic AMP response. Nevertheless, the expected Na+ behaviors were still observed. Dibutyryl cyclic AMP is capable of eliciting a cyclic AMP response in chick sensory ganglia after 6 h of nerve growth factor deprivation. When both agents were presented simultaneously to the ganglia, only a single cyclic AMP response was obtained, corresponding in time to the response elicited by dibutyryl cyclic AMP alone-indicating that this drug acts on the NGF-sensitive cells. At the same time dibutyryl cyclic AMP alone failed to result in a Na+ response, leading one to conclude that the cyclic AMP response to nerve growth factor is truly not mediating the Na+ response. Additional support for the mutual independence of these two short-latency responses is provided by the apparent inability of nerve growth factor to cause a cyclic AMP response in chick embryo sympathetic ganglia, another traditional target for the factor, which is capable of displaying a Na+ response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...