Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 501 (1987), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 469 (1986), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 542 (1988), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 33 (1989), S. 62-71 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Several independent experimental techniques, including nondenaturing and denaturing isoelectric focusing, spin labeling, and enzyme immobilization, indicate that four ethanol-active subunits of horse liver alcohol dehydrogenase (LADH) can be classified as one of two types, designated E1 and E2. Thermal inactivation studies of LADH in solution and immobilized to two different supports demonstrate that the first-order rate constants of deactivation of E1 and E2 differ by more than an order of magnitude. Furthermore, E1, and E 2 can be distinguished by EPR spectroscopy, with the less stable subunit type, E2, appearing to have the less compactly structured active-site environment. The less stable enzyme form also loses catalytic activity upon covalent attachment to CNBr-Sepharose but remains active when adsorbed to Octyl-Sepharose. Moreover, the immobilization results in conjunction with lysine modification studies suggest that E2 immobilized to CNBr-Sepharose cannot bind coenyzme. Overall, these results illustrate how EPR measurements in concert with activity assays can pro vide insights into the molecular mechanisms of enzyme stabilization.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 37 (1991), S. 303-308 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The oxidation of cinnamyl alcohol to cinnamaldehyde by horse liver alcohol dehydrogenase (LADH) was carried out in nearly anhydrous organic solvents and in solvents containing from 0.1 to 10% added water. In nearly anhydrous solvents containing less than 0.02% water, the oxidation rate increased as the water solubility in the solvent decreased, but the reaction did not require active LADH. Moreover, the highest activity in nearly anhydrous heptane was obtained by lyophilizing the enzyme from a solution of pH 2.0, even though LADH exhibits virtually no enzymatic activity in water at this pH. The catalytic activity of LADH was restored and increased dramatically as small amounts of water were added to each solvent. In conjunction with the activity measurements, electron paramagnetic resonance (EPR) spectroscopy and two active-site directed spin labels were used to examine solvent-dependent structural features of LADH. The EPR spectra indicated that LADH became more rigid as the dielectric constant of the solvent decreased. The degree of rigidity also depended on the pH from which the enzyme was lyophilized, indicating that the ionization state of the enzyme can have an important influence on its dynamics in organic solvents. Finally, adding 1% water to organic solvents had no apparent effect on the enzyme's conformation or flexibility near the spin label, even though enzyme activity was an order of magnitude higher when 1% water was present.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 32 (1988), S. 148-158 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Alcohol dehydrogenase from horse liver was immobilized by covalent attachment to CNBr-Sepharose and by adsorption to octyl-Sepharose CL-4B, a hydrophobic analog of Sepharose. In each case, rate constants for the binding and release of coenzyme and for the oxidation of substrates were measured based on the concentration of accessible active-site zinc atoms determined by titration with a paramagnetic inhibitor. All rate constants were substantially reduced upon immobilization; however, the rate constant of immobilized enzyme for ethanol oxidation was independent of the immobilization method, whereas the rate constant for cyclohexanol oxidation was lower for enzyme immobilized to octyl-Sepharose. Consequently, the substrate specificity of the two immobilized enzyme samples differed by an order of magnitude. Moreover, EPR spectroscopy studies and computer graphic analyses of spin labels occupying three defined regions of the active-site domain indicated that the active-site conformation adjacent to the catalytic zinc atom was similar in the two samples while the conformation slightly further from the zinc atom was different. This result may explain why the two immobilized enzyme preparations exhibited the same rate constant toward a small substrate (ethanol) yet different rate constants toward a larger substrate (cyclohexanol), whose rate constant is expected to be sensitive to a larger portion of the active site.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...