Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A time-dependent, nonplanar, two-dimensional magnetohydrodynamic computer model is used to simulate a series, separately examined, of solar flare-generated shock waves and their subsequent disturbances in interplanetary space between the Sun and the Earth's magnetosphere. The ‘canonical’ or ansatz series of shock waves include initial velocities near the Sun over the range 500 to 3500 km s−1. The ambient solar wind, through which they propagate, is taken to be a steady-state homogeneous plasma (that is, independent of heliolongitude) with a representative set of plasma and magnetic field parameters. Complete sets of solar wind plasma and magnetic field parameters are presented and discussed. Particular attention is addressed to the MHD model's ability to address fundamental operational questions vis-à-vis the long-range forecasting of geomagnetic disturbances. These questions are: (i) will a disturbance (such as the present canonical series of solar flare shock waves) produce a magnetospheric and ionospheric disturbance, and, if so, (ii) when will it start, (iii) how severe will it be, and (iv) how long will it last? The model's output is used to compute various solar wind indices of current interest as a demonstration of the model's potential for providing ‘answers’ to these questions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We present the results of an analysis of the east-west asymmetry in the solar flare distribution, observed during the years from 1976 to 1985. We conclude that flare events, all type of Hα flares, are not uniformly spread in heliolongitude over the solar disc when considering events with heliolongitudes greater than 60°, or even closer to central meridian for certain periods. This lack of homogeneity, however, does not have an influence on the definition of east-west asymmetries. Simple random distribution of flares over the solar disc can not account for the asymmetries found, but they can be explained in terms of the transit of ‘active regions’ in front of the observer's position. Nonetheless, this is not the case for the distribution of flares equal or more intense than importance 1F observed during 1979.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 127 (1990), S. 297-320 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Solar proton events have been routinely detected by satellites since the 20th solar cycle; however, before that time only very major proton events were detected at the Earth. Even though the detection thresholds differed between the 19th and more recent cycles, more than 200 solar proton events with a flux of over 10 particles (cm2 s ster)−1 above 10 MeV have been recorded at the Earth in the last three solar cycles. At least 15% of these events had protons with energies greater than 450 MeV detected at the Earth. Other than an increase in solar proton event occurrence with increasing solar cycle, no recognizable pattern could be identified between the occurrence of solar proton events and the solar cycle. The knowledge we have gained from the data acquired over the past 40 years illustrates the difficulty in extrapolating back in time to infer the number and intensity of major solar proton events at the Earth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Data on X-,γ-ray, optical and radio emission from the 1991 June 15 solar flare are considered. We have calculated the spectrum of protons that producesγ-rays during the gradual phase of the flare. The primary proton spectrum can be described as a Bessel-function-type up to 0.8 GeV and a power law with the spectral index ≈3 from 0.8 up to 10 GeV or above. We have also analyzed data on energetic particles near the Earth. Their spectrum differed from that of primary protons producingγ-ray line emission. In the gradual phase of the flare additional pulses of energy release occurred and the time profiles of cm-radio emission andγ-rays in the 0.8–10 MeV energy band and above 50 MeV coincided. A continuous and simultaneous stochastic acceleration of the protons and relativistic electrons at the gradual phase of the flare is considered as a natural explanation of the data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 16 (1971), S. 484-487 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract In this paper, we are primarily concerned with the solar neutron emission during the 1990 May 24 flare, utilizing the counting rate of the Climax neutron monitor and the time profiles of hard X-rays and γ-rays obtained with the GRANAT satellite (Pelaezet al., 1992; Talonet al., 1993; Terekhovet al., 1993). We compare the derived neutron injection function with macroscopic parameters of the flare region as obtained from theHα and microwave observations made at the Big Bear Solar Observatory and the Owens Valley Radio Observatory, respectively. Our results are summarized as follows: (1) to explain the neutron monitor counting rate and 57.5–110 MeV and 2.2 MeV γ-ray time profiles, we consider a two-component neutron injection function,Q(E, t), with the form $$Q(E,t) = N_f {\text{ exp[}} - E/E_f - t/T_f ] + N_s {\text{ exp[}} - E/E_s - t/T_s ],$$ whereN f(s),E f(s), andT f(s) denote number, energy, and decay time of the fast (slow) injection component, respectively. By comparing the calculated neutron counting rate with the observations from the Climax neutron monitor we derive the best-fit parameters asT f ≈ 20 s,E f ≈ 310 MeV,T s ≈ 260 s,E s ≈ 80 MeV, andN f (E 〉 100 MeV)/N s (E 〉 100 MeV) ≈ 0.2. (2) From the Hα observations, we find a relatively small loop of length ≈ 2 × 104 km, which may be regarded as the source for the fast-decaying component of γ-rays (57.5–110 MeV) and for the fast component of neutron emission. From microwave visibility and the microwave total power spectrum we postulate the presence of a rather big loop (≈ 2 × 105 km), which we regard as being responsible for the slow-decaying component of the high-energy emission. We show how the neutron and γ-ray emission data can be explained in terms of the macroscopic parameters derived from the Hα and microwave observations. (3) The Hα observations also reveal the presence of a fast mode MHD shock (the Moreton wave) which precedes the microwave peak by 20–30 s and the peak of γ-ray intensity by 40–50 s. From this relative timing and the single-pulsed time profiles of both radiations, we can attribute the whole event as due to a prompt acceleration of both electrons and protons by the shock and subsequent deceleration of the trapped particles while they propagate inside the magnetic loops.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 32 (1982), S. 9-9 
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 32 (1982), S. 251-271 
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A model of the time evolving relativistic solar proton spectra for the 7 May 1978 ground level solar cosmic ray event is presented. This event, with associated cosmic ray neutron monitor increases of over 100% and containing relativistic particles with energies greater than 10 GeV/nucleon was characterized by an extreme anisotropy and a rapidly evolving spectrum, particularly during the initial phase. The observational data from cosmic ray neutron monitors viewing in the ‘anti-Sun’ direction (180° away from the initial solar particle direction) indicates that a back scatter pulse of ∼ 4% of the primary pulse was observed at the Earth ∼ 20 min after the event onset. Previous attempts to model the solar particle spectrum found consistent and systematic differences between the theoretically calculated cosmic ray increase and the actual increase as observed by neutron monitors. In order to reconcile these differences, we have concluded that the observational data give evidence for a rigidity dependent release of relativistic solar protons from the solar corona during the very early stages of this event.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...