Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Like other members of the medically important phylum Apicomplexa, Toxoplasma gondii is an obligate intracellular parasite that secretes several classes of proteins involved in the active invasion of target host cells. Proteins in apical secretory organelles known as micronemes have been strongly implicated in parasite attachment to host cells. TgMIC2 is a microneme protein with multiple adhesive domains that bind target cells and is mobilized onto the parasite surface during parasite attachment. Here, we describe a novel parasite protein, TgM2AP, which is physically associated with TgMIC2. TgM2AP complexes with TgMIC2 within 15 min of synthesis and remains associated with TgMIC2 in the micronemes, on the parasite surface during invasion and in the culture medium after release from the parasite plasma membrane. TgM2AP is proteolytically processed initially when its propeptide is removed during transit through the golgi and later while it occupies the parasite surface after discharge from the micronemes. We show that TgM2AP is a member of a protein family expressed by coccidian parasites including Neospora caninum and Eimeria tenella. This phylogenic conservation and association with a key adhesive protein suggest that TgM2AP is a fundamental component of the T. gondii invasion machinery.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 1011-1018 
    ISSN: 0006-3592
    Keywords: phenol ; tyrosinase ; chitosan ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The goal of this work was to explore the technical feasibility of an enzymatic approach as an alternative to traditional approaches for phenol separations. Specifically, we examined a two-step approach to selectively remove phenols from mixtures containing nonphenolic isomers. Our model solutes, of molecular formula C7H8O, were the phenol, cresol; the alkyl aryl ether, anisol; and the alcohol, benzyl alcohol. The first step is this two-step approach employed the enzyme mushroom tyrosinase to selectively convert the phenolic, presumably to an o-quinone product. The tyrosinase was specific for the phenol and was not observed to react with either the ether or the alcohol. The second step of this two-step approach employed a sorbent of an appropriate surface chemistry to bind the products of the tyrosinase-catalysed reaction of phenols. The sorbent used for this study was chitosan. Chitosan was observed to be unable to adsorb either nonphenol and was unable to adsorb unreacted cresol. However, Chittosan effectively adsorbs UV-absorbing reaction products of the tyrosinase-catalysed reaction of phenols. When mixtures of cresol and either anasol or benzyl alcohol were studied, the two-step approach was effective for completely removing the phenolic without loss of either the ether or alcohol or the ether (i.e., phenols were removed with high separation factors).
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...